Mutual Synthesis of Conjugated Polymers and Dopants for Well-Ordered Self-Assemblies

共轭聚合物和掺杂剂的相互合成以实现有序自组装

基本信息

  • 批准号:
    1708245
  • 负责人:
  • 金额:
    $ 39.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded by the Macromolecular, Supramolecular and Nanochemistry Program in the Division of Chemistry. Professor Howard E. Katz of Johns Hopkins University is supported to explore the idea that the main components of conducting plastics - the polymeric material and the dopants -- can be designed simultaneously for best performance. This requires that their molecule-sized subunits fit well together, continuous paths for conducting electricity are created, and the dopants maintain their ability to stabilize the electrical charges that move when the electricity is conducted. A fundamental issue to be explored is whether it is better for dopants to be mixed equally through the entire volume of the plastics, or whether it is better for separate parts of a mixture to be rich in the plastic and others be rich in the dopant. New ways to make plastics and dopants, more detailed understanding of how they fit together and promote electrical conduction in the plastic mixtures, and computer-based models for predicting the properties of the plastics in advance of making them are expected outcomes of this project. Conducting plastics are the basis of numerous emerging technologies such as plastic solar cells and light emitters for more efficient use of energy, detectors for dangerous chemicals important for defense operations, and medical devices to detect diseases. All of these technologies have created new economic opportunities. Integrating the research with education and outreach trains graduate students as future members of the plastic electronics workforce, and brings the opportunities of plastic electronics to elementary school, high school, and art institute students in the City of Baltimore. The main objective of this project is to design and synthesize pairs of conjugated, high-charge-carrier-mobility polymers and corresponding chemical dopants that induce charges in those polymers, such that the pairs form assemblies that retain favorable charge-transporting molecular organization. The supramolecular structure of the original polymer is a consequence of pi-interactions among the conjugated polymer main chains and regular spacing caused by alkyl side chains. The idea is to explore different chemical design elements in the polymer and dopant components so that the dopants become accommodated in the supramolecular structure, or even enhance the structure. These design strategies are compared to the extreme cases of dopants covalently attached to main chains, known as "self-doped polymers", and dopants that would be expected to phase segregate from the charge-transporting polymers and thus exist in separate domains. The molecular packing of the polymer-dopant assemblies is elucidated using x-ray and neutron scattering techniques. Absorbance, photoelectron, and electron spin resonance spectroscopy indicate the formation of charge carriers. Computational modeling creates a theoretical basis for both the packing and charge transfer efficiency. The outcome of this project guides the design of polymers that conduct electricity with high efficiency using only electrons or holes as charge carriers, without ionic contributions. The project may resolve the uncertainty about whether structures with dopant functionality adjacent to main chains or remote from main chains lead to better defined crystallinity and higher electronic conductivity. A theoretical basis for selecting among various assembly types for future designs is developed. Because the polymers are assembled from blends with dopants, the dopant concentration is tunable for the maximum conductivity, or alternatively for optimization of other functions such as charge injection into optoelectronic devices or matrices for thermoelectric composites.
该奖项由化学系高分子、超分子和纳米化学项目资助。 约翰·霍普金斯大学的 Howard E. Katz 教授得到支持,探索导电塑料的主要成分(聚合物材料和掺杂剂)可以同时设计以获得最佳性能的想法。 这要求它们的分子大小的亚基很好地配合在一起,创建连续的导电路径,并且掺杂剂保持其稳定导电时移动的电荷的能力。 需要探讨的一个基本问题是,掺杂剂是否均匀地混合在塑料的整个体积中更好,或者混合物的单独部分富含塑料而其他部分富含掺杂剂是否更好。 制造塑料和掺杂剂的新方法,更详细地了解它们如何组合在一起并促进塑料混合物中的导电,以及在制造塑料之前预测塑料性能的基于计算机的模型是该项目的预期成果。 导电塑料是众多新兴技术的基础,例如用于更有效利用能源的塑料太阳能电池和光发射器、对国防行动重要的危险化学品探测器以及用于检测疾病的医疗设备。 所有这些技术都创造了新的经济机会。 将研究与教育和推广相结合,将研究生培养为塑料电子劳动力的未来成员,并为巴尔的摩市的小学、高中和艺术学院的学生带来塑料电子的机会。 该项目的主要目标是设计和合成成对的共轭高电荷载流子迁移率聚合物以及相应的化学掺杂剂,这些掺杂剂在​​这些聚合物中诱导电荷,使得这些对形成保留有利的电荷传输分子组织的组件。 原始聚合物的超分子结构是共轭聚合物主链之间的π相互作用和烷基侧链引起的规则间距的结果。 这个想法是探索聚合物和掺杂剂成分中的不同化学设计元素,使掺杂剂适应超分子结构,甚至增强结构。 这些设计策略与共价连接到主链的掺杂剂(称为“自掺杂聚合物”)的极端情况进行比较,并且掺杂剂预计会与电荷传输聚合物相分离,从而存在于不同的域中。 使用 X 射线和中子散射技术阐明了聚合物-掺杂剂组件的分子堆积。 吸收光谱、光电子光谱和电子自旋共振光谱表明载流子的形成。 计算模型为堆积和电荷转移效率奠定了理论基础。 该项目的成果指导了聚合物的设计,该聚合物仅使用电子或空穴作为电荷载体,无需离子贡献即可高效导电。 该项目可以解决以下不确定性:具有邻近主链或远离主链的掺杂功能的结构是否会导致更好的结晶度和更高的电子电导率。 为未来设计中选择各种装配类型奠定了理论基础。 由于聚合物是由与掺杂剂的共混物组装而成,因此掺杂剂浓度可调节以获得最大电导率,或者优化其他功能,例如将电荷注入光电器件或热电复合材料的基质中。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3,4,5‐Trimethoxy Substitution on an N‐DMBI Dopant with New N‐Type Polymers: Polymer‐Dopant Matching for Improved Conductivity‐Seebeck Coefficient Relationship
用新型 N-型聚合物对 N-DMBI 掺杂剂进行 3,4,5-三甲氧基取代:聚合物-掺杂剂匹配以改善电导率-塞贝克系数关系
  • DOI:
    10.1002/anie.202110505
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han, Jinfeng;Chiu, Arlene;Ganley, Connor;McGuiggan, Patty;Thon, Susanna M.;Clancy, Paulette;Katz, Howard E.
  • 通讯作者:
    Katz, Howard E.
A chemical kinetics perspective on thermoelectric transport
热电输运的化学动力学视角
  • DOI:
    10.1063/5.0055367
  • 发表时间:
    2021-08-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Nanxian Chen;Juan Pino;H. Katz
  • 通讯作者:
    H. Katz
Dichlorinated Dithienylethene‐Based Copolymers for Air‐Stable n‐Type Conductivity and Thermoelectricity
用于空气的二氯化二噻吩乙烯共聚物 - 稳定的 n 型电导率和热电性
  • DOI:
    10.1002/adfm.202005901
  • 发表时间:
    2020-10-23
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Jinfeng Han;Huidong Fan;Qingyang Zhang;Qin Hu;T. Russell;H. Katz
  • 通讯作者:
    H. Katz
Blended Conjugated Host and Unconjugated Dopant Polymers Towards N‐type All‐Polymer Conductors and High‐ZT Thermoelectrics
混合共轭主体和非共轭掺杂聚合物以实现 N 型全聚合物导体和高 ZT 热电材料
  • DOI:
    10.1002/anie.202219313
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han, Jinfeng;Jiang, Yufeng;Tiernan, Emma;Ganley, Connor;Song, Yunjia;Lee, Taein;Chiu, Arlene;McGuiggan, Patty;Adams, Nicholas;Clancy, Paulette;et al
  • 通讯作者:
    et al
Suppression of Ionic Doping by Molecular Dopants in Conjugated Polymers for Improving Specificity and Sensitivity in Biosensing Applications
通过共轭聚合物中的分子掺杂剂抑制离子掺杂,提高生物传感应用的特异性和灵敏度
  • DOI:
    10.1021/acsami.0c11125
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Jang, Hyun;Song, Yunjia;Wagner, Justine;Katz, Howard E.
  • 通讯作者:
    Katz, Howard E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Howard Katz其他文献

XQuery from the Experts: A Guide to the W3C XML Query Language
专家的 XQuery:W3C XML 查询语言指南
  • DOI:
  • 发表时间:
    2003-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Howard Katz;D. Chamberlin;M. Kay;P. Wadler;Denise Draper
  • 通讯作者:
    Denise Draper

Howard Katz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Howard Katz', 18)}}的其他基金

CAS: Structure and Mechanism for Energy Capture from Anionic Seebeck Effects in Polymers
CAS:聚合物中阴离子塞贝克效应能量捕获的结构和机制
  • 批准号:
    2349649
  • 财政年份:
    2024
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
  • 批准号:
    2402407
  • 财政年份:
    2024
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
PFI-TT: Plastic Electronic Gas Sensors for Health Monitoring via Mobile Devices
PFI-TT:通过移动设备进行健康监测的塑料电子气体传感器
  • 批准号:
    2234261
  • 财政年份:
    2023
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
Conjugated Polymers Doped via Covalent Dopant-Molecule Adducts
通过共价掺杂剂分子加合物掺杂的共轭聚合物
  • 批准号:
    2107360
  • 财政年份:
    2021
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
Receptor Polymers for Enhanced Antibody-Mediated Electronic Neurological Protein Detection
用于增强抗体介导的电子神经蛋白检测的受体聚合物
  • 批准号:
    1807292
  • 财政年份:
    2018
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Continuing Grant
Stabilization and Circuit Strategies for Enhanced Vapor Sensing with Polymer Semiconductors
聚合物半导体增强蒸汽传感的稳定性和电路策略
  • 批准号:
    1807293
  • 财政年份:
    2018
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
Gate-Modulated Charge Density-Dependent Physics of Low-Dimensional Inorganic Semiconductors in Organic Multilayers
有机多层低维无机半导体的栅极调制电荷密度相关物理
  • 批准号:
    1308142
  • 财政年份:
    2013
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Continuing Grant
Solution-Processed Ionically Polarized Oxide Dielectrics and Integrated Electronic Materials for Low-Voltage Transparent Transistors
用于低压透明晶体管的溶液处理离子极化氧化物电介质和集成电子材料
  • 批准号:
    1005398
  • 财政年份:
    2010
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
Pyromellitic Diimide (PyDI)-Based Molecular and Polymeric Electron-Transporting Semiconductors
均苯四甲酸二酰亚胺 (PyDI) 基分子和聚合物电子传输半导体
  • 批准号:
    0905176
  • 财政年份:
    2009
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
P-N Interface Probing and Design for Organic/Hybrid Photovoltaics and Circuit Components
有机/混合光伏和电路元件的 P-N 界面探测和设计
  • 批准号:
    0823947
  • 财政年份:
    2008
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant

相似国自然基金

苯并二噁唑桥联全共轭共价有机骨架的合成及其光催化水劈裂制氢性能研究
  • 批准号:
    52373210
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
具有氧还原及水氧化双反应通道共轭微孔聚合物的构建及其光催化全合成过氧化氢研究
  • 批准号:
    22375076
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
α,β-不饱和酮亚胺的共轭加成构建几何构型确定的非环状四取代烯胺及其在立体选择性合成中的应用
  • 批准号:
    22361049
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于假性共轭聚合物的超声激活“合成致死”纳米复合体系的构建
  • 批准号:
    52373127
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Electrochemical and Photochemical Methods for Precision Synthesis of Conjugated Polymers
CAS:精密合成共轭聚合物的电化学和光化学方法
  • 批准号:
    2305056
  • 财政年份:
    2023
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
Peptide-Conjugated Palladium Oxidative Addition Complexes for Site-Selective Arylation Chemistry
用于位点选择性芳基化化学的肽缀合钯氧化加成络合物
  • 批准号:
    10677379
  • 财政年份:
    2023
  • 资助金额:
    $ 39.97万
  • 项目类别:
Nitro-nitrate fatty acid derivatives as novel cGMP-dependent and cGMP-independent signaling mediators
硝基硝酸脂肪酸衍生物作为新型 cGMP 依赖性和 cGMP 独立信号传导介质
  • 批准号:
    10583877
  • 财政年份:
    2023
  • 资助金额:
    $ 39.97万
  • 项目类别:
CAS: Electrochemical and Photochemical Methods for Precision Synthesis of Conjugated Polymers
CAS:精密合成共轭聚合物的电化学和光化学方法
  • 批准号:
    2305056
  • 财政年份:
    2023
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
Peptide-Conjugated Palladium Oxidative Addition Complexes for Site-Selective Arylation Chemistry
用于位点选择性芳基化化学的肽缀合钯氧化加成络合物
  • 批准号:
    10677379
  • 财政年份:
    2023
  • 资助金额:
    $ 39.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了