Developing Evidence-based Best Practices for Broadening Participation in Computing Education

开发基于证据的最佳实践以扩大计算机教育的参与

基本信息

  • 批准号:
    1821136
  • 负责人:
  • 金额:
    $ 182.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The demand for a motivated and capable computing workforce continues to grow. However, efforts to address this demand continue to fall short of expectations. This project aims to provide potential solutions, based on scientific evidence, to address our nation's need to expand the computing talent pool. The project team will analyze student and department-level data, and track students over time. The project team expects that results of this analysis will identify ways to help students of all backgrounds persist in computing. The project aims to understand departmental practices that support or discourage students' persistence in computing career tracks. In doing so, this project has the potential to aid broadening participation efforts in computing, and by extension in all STEM fields. This project plans to support computing departments through consultations and workshops, and encourage social and cultural change within computing environments. The project expects to disseminate evidence-based best practices through an established website devoted to disseminating tips for teaching computer science, customized reports to departments, media outlets, workshops, and academic venues.This project has the potential to stimulate social and cultural change in the computing education community through intervention-style consultation and workshops, and the dissemination of evidence-based best practices built upon research developed through this project. Department-level data will be collected through three mechanisms: faculty surveys, faculty interviews, and department website data. Department-level characteristics representing education practices within the computing community will be obtained from the data. The analysis of one-on-one meetings and workshops for faculty and department chairs in computing will measure strengths and weaknesses of department cultures. Customized actionable strategies will be developed through the CSTeachingTips initiative. In addition, national, longitudinal survey data will be collected from students in computing departments across the United States. These data will track changing experiences over time and identify potential linkages between students' persistence and departmental practices. These data will represent various demographic groups' learning experiences and persistence in computing career paths. The combined data collection infrastructure and CSTeachingTips have the potential to result in an influential longitudinal research program. The project team will work with an advisory committee to translate research findings into a set of best practices for computing departments, with a focus on preparing and retaining a broad, diverse student population to work in computing and STEM fields. The team will actively disseminate those best practices through the team's professional network of leaders in the computing education community, conferences that bring together key stakeholders, other relevant academic venues that reach STEM education audiences, and customizable reports and tip sheets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对积极进取和有能力的计算员工队伍的需求不断增长。但是,解决这一需求的努力仍然没有期望。该项目旨在根据科学证据提供潜在的解决方案,以应对我们国家扩大计算人才库的需求。项目团队将分析学生和部门级别的数据,并随着时间的推移跟踪学生。 项目团队预计该分析的结果将确定帮助所有背景的学生持续进行计算。该项目旨在了解支持或阻止学生在计算职业轨道上坚持不懈的部门实践。通过这样做,该项目有可能协助扩大计算中的参与工作,并在所有STEM领域扩展。该项目计划通过咨询和研讨会来支持计算部门,并鼓励计算环境中的社会和文化变革。该项目希望通过一个既定的网站来传播基于证据的最佳实践,该网站致力于传播计算机科学的教学技巧,向部门,媒体,研讨会和学术场所进行定制报告。该项目有可能通过基于循证咨询和循证习惯来刺激计算机教育社区的社会和文化变革,以及通过循证最佳实践进行的项目,该项目通过开发的实践来启动。部门级数据将通过三种机制收集:教职员工调查,教职员工访谈和部门网站数据。代表计算社区中教育实践的部门级特征将从数据中获得。对计算的教职员工和部门主席的一对一会议和研讨会的分析将衡量部门文化的优势和劣势。定制的可行策略将通过CSTEACHITS计划制定。此外,将从美国计算机部门的学生那里收集国家纵向调查数据。这些数据将随着时间的流逝跟踪不断变化的体验,并确定学生的毅力和部门实践之间的潜在联系。这些数据将代表各种人口组的学习经验和计算职业道路的持久性。组合的数据收集基础设施和CSTEACHITS有可能导致有影响力的纵向研究计划。项目团队将与咨询委员会合作,将研究结果转化为计算部门的一系列最佳实践,重点是准备和留住广泛,多样化的学生人群,以在计算和STEM领域工作。团队将通过团队在计算教育社区中的专业领导者网络积极分散这些最佳实践,这些会议将关键的利益相关者汇集在一起​​,其他相关的学术场所吸引了STEM教育受众,以及可自定义的报告和提示表。该奖项反映了NSF的法定任务,并通过评估基金会的Merit和BroadIt和Broadia and crowia and Impactia和Broadia and Impactia and Intfactial和Broadia and Impactia the Intellia and Broadia and Impactia and Impacia and Impactia奖。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Competitive Enrollment Policies in Computing Departments Negatively Predict First-Year Students' Sense of Belonging, Self-Efficacy, and Perception of Department
计算机系的竞争性招生政策会负面预测一年级学生的归属感、自我效能感和对系的看法
Understanding Institutional Factors to Broaden Participation in Computing
了解扩大计算参与的制度因素
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wright, Heather M;Tamer, Burcin N.;Lewis, Colleen M.
  • 通讯作者:
    Lewis, Colleen M.
Alignment of Goals and Perceptions of Computing Predicts Students' Sense of Belonging in Computing
目标和对计算的看法的一致可以预测学生对计算的归属感
Three Metrics of Success for High School CSforAll Initiatives: Demographic Patterns from 2003 to 2019 on Advanced Placement Computer Science Exams
高中 CSforAll 计划成功的三个指标:2003 年至 2019 年计算机科学先修课程考试的人口统计模式
Can Sending First and Second Year Computing Students to Technical Conferences Help Retention?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Burcin Campbell其他文献

Burcin Campbell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Burcin Campbell', 18)}}的其他基金

BPC-DP: Developing Shared Measures Among the BPC Community
BPC-DP:在 BPC 社区中制定共享措施
  • 批准号:
    2137842
  • 财政年份:
    2021
  • 资助金额:
    $ 182.05万
  • 项目类别:
    Standard Grant
Scaffolding NSF CISE REU Site Evaluation Through Comparative and Longitudinal Tracking
通过比较和纵向跟踪搭建 NSF CISE REU 现场评估
  • 批准号:
    2036717
  • 财政年份:
    2020
  • 资助金额:
    $ 182.05万
  • 项目类别:
    Standard Grant
Workshop Series on Broadening Participation in Computing (BPC) Plans for Departments
关于扩大部门参与计算(BPC)计划的研讨会系列
  • 批准号:
    2032231
  • 财政年份:
    2020
  • 资助金额:
    $ 182.05万
  • 项目类别:
    Standard Grant
BPCnet: Scaling Up the Impact of NSF CISE Broadening Participation Activities
BPCnet:扩大 NSF CISE 扩大参与活动的影响
  • 批准号:
    1940460
  • 财政年份:
    2019
  • 资助金额:
    $ 182.05万
  • 项目类别:
    Standard Grant
Promoting a Diverse Computing Workforce: Using National Survey Data to Understand Persistence Across Undergraduate Student Groups
促进计算劳动力多元化:利用全国调查数据了解本科生群体的持久性
  • 批准号:
    1431112
  • 财政年份:
    2014
  • 资助金额:
    $ 182.05万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于证据理论的非完备信息度量及融合方法研究
  • 批准号:
    62301439
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于化石与现生证据的二纺蛛总科蜘蛛系统演化研究
  • 批准号:
    32300364
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于混合方法研究与知识图谱的中医古籍证据智能评价系统研究—以胸痹为例
  • 批准号:
    82305440
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
跨国媒体舆论与全球资产配置:基于全球共同基金的微观证据
  • 批准号:
    72303157
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
金融科技对银行中介与货币政策传导的影响研究——基于存款市场的理论、经验证据和机制分析
  • 批准号:
    72303208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing and Evaluating a Positive Valence Treatment for Alcohol Use Disorder with Anxiety or Depression
开发和评估治疗伴有焦虑或抑郁的酒精使用障碍的正价疗法
  • 批准号:
    10596013
  • 财政年份:
    2023
  • 资助金额:
    $ 182.05万
  • 项目类别:
Home Alone: Developing a Home-Based Intervention for People with Cognitive Impairment Who Live Alone
独自在家:为独居认知障碍患者制定家庭干预措施
  • 批准号:
    10590347
  • 财政年份:
    2023
  • 资助金额:
    $ 182.05万
  • 项目类别:
Developing a Scalable FASD-Informed Person-Centered Planning Intervention
制定可扩展的 FASD 知情的以人为中心的规划干预措施
  • 批准号:
    10644186
  • 财政年份:
    2023
  • 资助金额:
    $ 182.05万
  • 项目类别:
Developing and testing a multi-component intervention to improve Perinatal Mental Health
开发和测试多成分干预措施以改善围产期心理健康
  • 批准号:
    10723985
  • 财政年份:
    2023
  • 资助金额:
    $ 182.05万
  • 项目类别:
Developing and evaluating a mobile application-based intervention to support HPV-tested women and increase their retention to follow-up: a mixed-methods implementation study
开发和评估基于移动应用程序的干预措施,以支持接受 HPV 检测的女性并提高她们的随访率:一项混合方法实施研究
  • 批准号:
    10740962
  • 财政年份:
    2023
  • 资助金额:
    $ 182.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了