NeTS: Large: Collaborative Research: ASTRO: A Platform for 3-D Data-Driven Mobile Sensing via Networked Drones
NeTS:大型:协作研究:ASTRO:通过联网无人机进行 3D 数据驱动的移动传感平台
基本信息
- 批准号:1801865
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The driving vision of this project is to detect Volatile Organic Compounds (VOCs) through ASTRO, a platform for autonomous 3-D data-driven mobile sensing via networked drones equipped with gas sensors. VOCs are hazardous to human health and the environment; they are released by explosions, gas leaks, and industrial accidents prevalent in low-income and under-resourced urban neighborhoods in close proximity to industrial processing plants, chemical refineries, and other sources of airborne pollutants. The project is located in an economically disadvantaged area of Houston, Texas. With Technology For All (TFA), the project team has a history of engaging the local community via broadband access, technology training, and connected health. The TFA wireless network already serves 1000's of community members in several square kilometers in Houston's East End via a mix of commercial Wi-Fi and software defined radios. The project targets realizing a high-resolution ground truth of environmental conditions in low-income urban areas which can impact emergency response procedures and environmental justice via policy and law. The project will develop a mobile app that alerts community residents of hazardous VOC concentrations near their current location. This project will impact urban areas with a demonstration of fusing next generation environmental sensing with next generation wireless access via networked drones. The project's objective is to realize an unprecedented resolution in VOC sensing by development and demonstration of ASTRO, a system for networked drone sensing missions without ground control. ASTRO will realize the unique capability to dynamically move sensors in 3-D according to real-time measurements. Consequently, networks of drones with on-board sensors can find and track VOC plumes, solely by coordinating among themselves, and without requiring a centralized ground controller. Two inter-related thrusts will realize this vision. The first is target detection, tracking, and modeling high VOC concentration clusters, targeting health and environmental safety. The second is development of the underlying principles and methodologies for data-driven mobile missions via drone networks. The project's outcomes will include lightweight machine learning methods that provide foundations for real-time distributed autonomous sensing with environmental and health objectives. These data sets will yield development of atmospheric models of VOCs at a finer resolution than is possible today. Moreover, the outcomes will also include methods for adaptive communication among the networked drones via software defined radios that can adapt their network topology and spectrum usage to realize mission objectives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要愿景是通过 ASTRO 检测挥发性有机化合物 (VOC),ASTRO 是一个通过配备气体传感器的联网无人机进行自主 3D 数据驱动移动传感的平台。 VOCs对人体健康和环境有害;它们是由靠近工业加工厂、炼油厂和其他空气污染物源的低收入和资源贫乏城市社区普遍存在的爆炸、煤气泄漏和工业事故释放的。该项目位于德克萨斯州休斯顿经济贫困地区。通过“全民技术”(TFA),项目团队一直通过宽带接入、技术培训和互联健康与当地社区互动。 TFA 无线网络已通过商业 Wi-Fi 和软件定义无线电的组合为休斯顿东区数平方公里的数千名社区成员提供服务。该项目的目标是实现低收入城市地区环境条件的高分辨率地面实况,这可以通过政策和法律影响应急响应程序和环境正义。该项目将开发一款移动应用程序,提醒社区居民当前位置附近的有害挥发性有机化合物浓度。该项目将通过展示通过联网无人机将下一代环境传感与下一代无线接入相融合来影响城市地区。 该项目的目标是通过开发和演示 ASTRO(一种无需地面控制的网络无人机传感任务系统)来实现 VOC 传感前所未有的分辨率。 ASTRO 将实现根据实时测量动态移动 3D 传感器的独特功能。因此,带有机载传感器的无人机网络可以仅通过它们之间的协调来发现和跟踪 VOC 羽流,而不需要集中的地面控制器。两个相互关联的推动力将实现这一愿景。第一个是目标检测、跟踪和建模高 VOC 浓度簇,以健康和环境安全为目标。第二个是开发通过无人机网络进行数据驱动的移动任务的基本原理和方法。该项目的成果将包括轻量级机器学习方法,为具有环境和健康目标的实时分布式自主传感提供基础。这些数据集将以比目前更精细的分辨率开发 VOC 大气模型。此外,成果还将包括通过软件定义无线电在联网无人机之间进行自适应通信的方法,这些方法可以调整其网络拓扑和频谱使用以实现任务目标。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PipeGCN: Efficient Full-Graph Training of Graph Convolutional Networks with Pipelined Feature Communication
PipeGCN:具有流水线特征通信的图卷积网络的高效全图训练
- DOI:10.48550/arxiv.2203.10428
- 发表时间:2022-03-20
- 期刊:
- 影响因子:0
- 作者:Cheng Wan;Youjie Li;Cameron R. Wolfe;Anastasios Kyrillidis;Namjae Kim;Yingyan Lin
- 通讯作者:Yingyan Lin
CPT: Efficient Deep Neural Network Training via Cyclic Precision
CPT:通过循环精度进行高效深度神经网络训练
- DOI:
- 发表时间:2021-01-25
- 期刊:
- 影响因子:0
- 作者:Y. Fu;Han Guo;Meng Li;Xin Yang;Yining Ding;V. Ch;ra;ra;Yingyan Lin
- 通讯作者:Yingyan Lin
DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks
DepthShrinker:一种新的压缩范式,旨在提高紧凑型神经网络的实际硬件效率
- DOI:10.48550/arxiv.2206.00843
- 发表时间:2022-06-02
- 期刊:
- 影响因子:0
- 作者:Y. Fu;Haichuan Yang;Jiayi Yuan;Meng Li;Cheng Wan;Raghuraman Krishnamoorthi;Vikas Ch;ra;ra;Yingyan Lin
- 通讯作者:Yingyan Lin
Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone
用于乙烯检测的石英增强光声传感器实施优化的定制音叉分光器
- DOI:10.1364/oe.27.004271
- 发表时间:2019-01
- 期刊:
- 影响因子:3.8
- 作者:Giglio, Marilena;Elefante, Arianna;Patimisco, Pietro;Sampaolo, Angelo;Sgobba, Fabrizio;Rossmadl, Hubert;Mackowiak, Verena;Wu, Hongpeng;Tittel, Frank K.;Dong, Lei;et al
- 通讯作者:et al
Robust Environmental Sensing Using UAVs
使用无人机进行强大的环境传感
- DOI:10.1145/3464943
- 发表时间:2021-07-15
- 期刊:
- 影响因子:0
- 作者:Ahmed Boubrima;E. Knightly
- 通讯作者:E. Knightly
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Knightly其他文献
Edward Knightly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Knightly', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
- 批准号:
2211618 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Large: Scaling WLANs to TB/sec: THz Spectrum, Architectures, and Control
合作研究:CNS 核心:大型:将 WLAN 扩展到 TB/秒:太赫兹频谱、架构和控制
- 批准号:
1955075 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
SpecEES: Collaborative Research: Efficient and Secure Access to Spectrum up to THz
SpecEES:协作研究:高效、安全地访问高达太赫兹的频谱
- 批准号:
1923782 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Efficient and Secure Access to Spectrum up to THz
SpecEES:协作研究:高效、安全地访问高达太赫兹的频谱
- 批准号:
1923782 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Scaling WLANs in Spectrum, User Density, and Robustness
NeTS:中:协作研究:扩展 WLAN 的频谱、用户密度和鲁棒性
- 批准号:
1801857 - 财政年份:2018
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
SpecEES: DoS Resilience, Secrecy, and Throughput in Massive MIMO
SpecEES:大规模 MIMO 中的 DoS 弹性、保密性和吞吐量
- 批准号:
1824529 - 财政年份:2018
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
EARS: Terabit-per-second Scale Networking: Design to Field Trials, Lab to Tower
EARS:太比特每秒规模的网络:设计到现场试验、实验室到塔楼
- 批准号:
1642929 - 财政年份:2016
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
NeTS: Medium: Scaling WLAN Throughput and Range with Wide Aperture and 100x Spectrum Diversity
NeTS:中:通过大孔径和 100 倍频谱分集扩展 WLAN 吞吐量和范围
- 批准号:
1514285 - 财政年份:2015
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
EARS: Enhanced Spectrum Availability and MU-MIMO Coordination for High Spatial-Spectral Efficiency
EARS:增强频谱可用性和 MU-MIMO 协调,实现高空间频谱效率
- 批准号:
1444056 - 财政年份:2014
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
MRI: Development and Deployment of an Operational and Programmable Diverse-Spectrum Access Network
MRI:可操作且可编程的多频谱接入网络的开发和部署
- 批准号:
1126478 - 财政年份:2011
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
相似国自然基金
基于可变惯容调谐质量阻尼器的大跨度桥梁多模态涡振半主动控制方法研究
- 批准号:52378147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向要素流动的城市群居民活动空间边界识别、机理与测度研究:以粤港澳大湾区为例
- 批准号:42371202
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
苯并环辛烷类大环对质膜外表面磷脂酰丝氨酸的选择性识别及其体外的应用研究
- 批准号:22301046
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
- 批准号:42301182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高光产额、快衰减、大尺寸Cs3Cu2I5:Mn晶体的水溶液法生长研究
- 批准号:62305193
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312710 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312709 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
NeTS: Large: Collaborative Research: Design Principles for a Future-Proof Internet Control Plane
NetS:大型:协作研究:面向未来的互联网控制平面的设计原则
- 批准号:
2202649 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
NeTS: Large: Collaborative Research: GigaNets: A Path to Experimental Research in Millimeter Wave Networking
NeTS:大型:协作研究:GigaNets:毫米波网络实验研究之路
- 批准号:
1952942 - 财政年份:2018
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant