Advancing Fractional Combinatorial Optimization: Computation and Applications

推进分数组合优化:计算和应用

基本信息

  • 批准号:
    1818700
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

Single- and multiple-ratio fractional combinatorial optimization problems naturally arise in diverse application contexts when modeling trade-offs such as maximizing return/investment, maximizing profit/time, minimizing cost/time or minimizing wasted/used material. For example, risk-adverse decision-makers are often interested in solutions that provide a good trade-off between the expected return and risk, which can be modeled naturally as the ratio function. Also, fractional objectives can be used for feature selection and clustering in data mining as well as for solving isoperimetric problems on graphs that can be applied for error-correcting codes and image segmentation. There are no adequate solution approaches for these classes of optimization problems if they involve integrality and/or combinatorial restrictions (constraints). Therefore, if successful, the proposed research will substantially enhance the ability to solve these hard classes of optimization problems and can lead to a more widespread use of single- and multiple-ratio fractional measures in existing and emerging applications.The project's main goal is to develop computational approaches with the solid underlying theoretical foundation, that deliver provably good solutions and can be used to solve realistically sized instances of single- and multiple-ratio fractional combinatorial optimization problems. In order to do so, the investigators propose to systematically exploit the combinatorial structure of the feasible region and structural properties of the ratio functions to construct strong convex relaxations of the fractional combinatorial optimization problems. The investigators will also explore single- and multiple-ratio fractional combinatorial optimization problems under parameter uncertainty. The proposed research, unlike most of previous work in the related literature, does not enforce restrictive simplifying assumptions on either the combinatorial structure induced by the constraint set or the number of ratios. Furthermore, the research does not rely on assuming that the functions in the numerators and denominators of the ratios are affine. The proposed approaches draw ideas and will contribute to the literature of mathematical optimization, particularly conic, fractional and discrete optimization, combinatorics, and algebraic graph theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在对诸如最大化回报/投资、最大化利润/时间、最小化成本/时间或最小化浪费/使用的材料等权衡进行建模时,单比和多比分数组合优化问题自然会出现在不同的应用环境中。 例如,规避风险的决策者通常对能够在预期回报和风险之间提供良好权衡的解决方案感兴趣,可以自然地将其建模为比率函数。此外,分数目标还可用于数据挖掘中的特征选择和聚类,以及解决图上的等周问题,这些问题可应用于纠错码和图像分割。如果这些类别的优化问题涉及完整性和/或组合限制(约束),则没有适当的解决方法。因此,如果成功,所提出的研究将大大提高解决这些难题的优化问题的能力,并可以在现有和新兴应用中更广泛地使用单比率和多比率分数测量。该项目的主要目标是开发具有坚实基础理论基础的计算方法,提供可证明的良好解决方案,并可用于解决单比率和多比率分数组合优化问题的实际大小实例。为此,研究人员建议系统地利用可行区域的组合结构和比率函数的结构特性来构造分数组合优化问题的强凸松弛。研究人员还将探索参数不确定下的单比和多比分数组合优化问题。与相关文献中的大多数先前工作不同,所提出的研究并不对约束集引起的组合结构或比率数量强制执行限制性简化假设。此外,该研究并不依赖于假设比率的分子和分母的函数是仿射的。所提出的方法汲取了思想,并将为数学优化文献做出贡献,特别是圆锥优化、分数优化和离散优化、组合学和代数图论。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fractional 0–1 programming and submodularity
  • DOI:
    10.1007/s10898-022-01131-5
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Shaoning Han;A. Gómez;O. Prokopyev
  • 通讯作者:
    Shaoning Han;A. Gómez;O. Prokopyev
Fractional 0–1 programs: links between mixed-integer linear and conic quadratic formulations
分数 0-1 程序:混合整数线性和二次曲线公式之间的联系
  • DOI:
    10.1007/s10898-019-00817-7
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Mehmanchi, Erfan;Gómez, Andrés;Prokopyev, Oleg A.
  • 通讯作者:
    Prokopyev, Oleg A.
Submodularity in Conic Quadratic Mixed 0–1 Optimization
二次二次混合 0-1 优化中的子模性
  • DOI:
    10.1287/opre.2019.1888
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Atamtürk, Alper;Gómez, Andrés
  • 通讯作者:
    Gómez, Andrés
Solving a class of feature selection problems via fractional 0–1 programming
  • DOI:
    10.1007/s10479-020-03917-w
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Erfan Mehmanchi;A. Gómez;O. Prokopyev
  • 通讯作者:
    Erfan Mehmanchi;A. Gómez;O. Prokopyev
Sparse and Smooth Signal Estimation: Convexification of L0 Formulations
  • DOI:
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alper Atamtürk;A. Gómez;Shaoning Han
  • 通讯作者:
    Alper Atamtürk;A. Gómez;Shaoning Han
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andres Gomez其他文献

The Horse Gut Microbiome Responds in a Highly Individualized Manner to Forage Ligni�cation
马肠道微生物组以高度个体化的方式对饲料木质化做出反应
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andres Gomez
  • 通讯作者:
    Andres Gomez
Dataset: Tracing Indoor Solar Harvesting
数据集:追踪室内太阳能收集
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Sigrist;Andres Gomez;L. Thiele
  • 通讯作者:
    L. Thiele
Energy-Efficient Bootstrapping in Multi-hop Harvesting-Based Networks
基于多跳收集的网络中的节能引导
Self-powered wireless sensor nodes for monitoring radioactivity in contaminated areas using unmanned aerial vehicles
使用无人机监测污染区域放射性的自供电无线传感器节点
  • DOI:
    10.1109/sas.2015.7133627
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andres Gomez;M. Lagadec;Michele Magno;L. Benini
  • 通讯作者:
    L. Benini
Extending the Lifetime of Nano-Blimps via Dynamic Motor Control
通过动态电机控制延长纳米飞艇的使用寿命
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniele Palossi;Andres Gomez;Stefan Draskovic;A. Marongiu;L. Thiele;L. Benini
  • 通讯作者:
    L. Benini

Andres Gomez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andres Gomez', 18)}}的其他基金

Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
  • 批准号:
    2152777
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
2022 Mixed Integer Programming Workshop Poster Session and Computational Competition; New Brunswick, New Jersey; May 24-26, 2022
2022年混合整数规划研讨会海报会议及计算竞赛;
  • 批准号:
    2211222
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Advancing Fractional Combinatorial Optimization: Computation and Applications
推进分数组合优化:计算和应用
  • 批准号:
    2128611
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Convexification-based Decomposition Methods for Large-Scale Inference in Graphical Models
合作研究:CIF:小型:图模型中大规模推理的基于凸化的分解方法
  • 批准号:
    2006762
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于深度学习的乘性分数高斯噪声驱动下复杂系统的动力学分析
  • 批准号:
    12362005
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
  • 批准号:
    42376190
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于衰减和频散逼近的TI粘弹性波方程有限差分数值求解新方法研究
  • 批准号:
    42304123
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非瞬时脉冲条件下分数阶随机系统的稳定性及其相关研究
  • 批准号:
    12361035
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
谷胱甘肽S-转移酶在射血分数保留型心力衰竭的作用及机制研究
  • 批准号:
    82300426
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A study on Diophantine problems via combinatorial methods
丢番图问题的组合方法研究
  • 批准号:
    22K13900
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Advancing Fractional Combinatorial Optimization: Computation and Applications
推进分数组合优化:计算和应用
  • 批准号:
    2128611
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Algorithm Design for k-Constrained Combinatorial Optimization Problems
k约束组合优化问题的算法设计
  • 批准号:
    21K11755
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric structures and combinatorial structures of 3-dimensional manifolds
3维流形的几何结构和组合结构
  • 批准号:
    20K03614
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了