Accurate Prediction of Fluid Motion
流体运动的准确预测
基本信息
- 批准号:1817542
- 负责人:
- 金额:$ 31.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurate prediction of fluid motion and materials thereby transported is essential for many critical engineering and scientific applications. As two examples, flow predictions are key to limiting damage of hurricanes to human life and to the economy (the latter estimated to be hundreds of billions of dollars in 2017) and to energy efficiency optimization (85% of US energy is generated by combustion for which accurate simulation of turbulent mixing is critical). Unfortunately, fundamental barriers to accurate, efficient and reliable prediction of fluid flow exist in these and other applications addressed in the proposed research. Accurate prediction with uncertain data requires reliable and efficient ensemble simulations. The cost of current methods limits prediction accuracy by limiting ensemble sizes. Further improvement requires new computational tools with a fundamental decrease in simulation cost and memory requirements. Algorithms which address these needs will be developed in this project. Artificial compression methods are by far the most efficient per time step but little used due to low time accuracy, restrictive time step conditions, stability problems, ill-conditioning and nonphysical acoustic waves. Their resolution will resurrect artificial compression methods into accurate, reliable and efficient methods for the prediction of fluid motion, expanding ensemble simulations and coupled flow prediction markedly beyond their current limitations. Artificial compression methods exhibit parasitic pressure waves that become resonant at higher Reynolds numbers. This research will develop a method dependent Lighthill theory of flow generated sound and apply it to design time filters to suppress parasitic acoustics. Time accuracy will be achieved by development of a new family of variable step, variable order methods. Variable step, variable order method have proven to be the most efficient, accurate and reliable methods to solve smaller systems of ordinary differential equations. However, previous variable step, variable order methods have limited penetration into computational fluid dynamics practice due partially to their implementation complexity and increased cost per step. The new methods have (to leading order) the same cognitive and computational complexity as the fully implicit method. Uncoupling of velocity and pressure in artificial compression methods introduces an extra grad-div term in the velocity solve, decreasing sparsity and increasing ill conditioning. Thus, the efficiency of artificial compression methods is lost with increased storage and solver cost per step. The research will develop a new realization, modular Grad-Div, reducing storage and turnaround time by a factor of 30 in preliminary tests. While each development has independent interest, they will be integrated into an ensemble, artificial compression method and tested on problems of compelling interest. The proposed research develops expertise of PhD students in analysis, numerical analysis and application areas while working on compelling mathematics problems of broad impact advancing the accurate prediction of fluid motion. It is carefully integrated with the development of the PI's PhD students and undergraduate researchers. Within the project, each PhD student can develop their own research agenda and collaborate at the points of contact among the research problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于许多关键的工程和科学应用来说,准确预测流体运动和材料是必不可少的。作为两个例子,流动预测是将飓风损害损害到人类生命和经济的关键(后者估计在2017年为数千亿美元)和能源效率优化(85%的美国能源是由燃烧产生的,这些能源的准确模拟对湍流混合至关重要)。不幸的是,在拟议的研究中涉及的这些和其他应用中,存在准确,高效和可靠预测流体流动的基本障碍。不确定数据的准确预测需要可靠,有效的集合模拟。当前方法的成本通过限制整体尺寸限制了预测准确性。进一步的改进需要新的计算工具,并减少模拟成本和内存需求。满足这些需求的算法将在此项目中开发。人工压缩方法是迄今为止每次步骤最有效的,但由于时间准确性,限制性时间步骤条件,稳定性问题,不良条件和非物理声波而几乎没有使用。他们的分辨率将使人工压缩方法复活到准确,可靠和有效的方法中,以预测流体运动,扩展集合模拟和耦合流量预测,明显超出了当前局限性。人工压缩方法表现出寄生压力波在较高的雷诺数下变为共鸣。这项研究将开发一种依赖于方法的流动声音理论,并将其应用于设计时间过滤器以抑制寄生声。时间准确性将通过开发新的可变步骤,可变顺序方法来实现。可变步骤,可变顺序方法已被证明是解决较小的普通微分方程系统的最有效,最准确和可靠的方法。 但是,以前的变量步骤,可变顺序方法有限地渗透到计算流体动力学实践中,部分原因是它们的实现复杂性和每步增加的成本增加。新方法(领导顺序)与完全隐式方法具有相同的认知和计算复杂性。人工压缩方法中速度和压力的解耦合在速度求解中引入了一个额外的毕业阶段,从而降低了稀疏性并增加了不良条件。因此,人工压缩方法的效率随着每步的存储和求解器成本的增加而丢失。这项研究将在初步测试中开发新的实现,模块化的GRAD-DIV,将存储时间和周转时间减少30倍。尽管每个开发都具有独立的兴趣,但它们将被整合到一种合奏,人工压缩的方法中,并根据引人注目的兴趣问题进行了测试。拟议的研究开发了博士生在分析,数值分析和应用领域方面的专业知识,同时致力于引人入胜的数学问题,这些问题广泛影响,推进了流体运动的准确预测。它与PI博士学位学生和本科研究人员的成长进行了仔细的整合。在该项目中,每个博士生都可以在研究问题之间建立自己的研究议程并在联系点上进行合作。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A time accurate, adaptive discretization for fluid flow problems
流体流动问题的时间精确、自适应离散化
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:1.1
- 作者:DECARIA, V.;LAYTON, W.;ZHAO, H.
- 通讯作者:ZHAO, H.
Numerical Analysis of an Artificial Compression Method for Magnetohydrodynamic Flows at Low Magnetic Reynolds Numbers
- DOI:10.1007/s10915-018-0670-5
- 发表时间:2018-03
- 期刊:
- 影响因子:2.5
- 作者:Y. Rong;W. Layton;Haiyun Zhao
- 通讯作者:Y. Rong;W. Layton;Haiyun Zhao
AN ARTIFICIAL COMPRESSION REDUCED ORDER MODEL
- DOI:10.1137/19m1246444
- 发表时间:2020-01-01
- 期刊:
- 影响因子:2.9
- 作者:Decaria, Victor;Iliescu, Traian;Schneier, Michael
- 通讯作者:Schneier, Michael
Doubly-adaptive artificial compression methods for incompressible flow
不可压缩流的双自适应人工压缩方法
- DOI:10.1515/jnma-2019-0015
- 发表时间:2020
- 期刊:
- 影响因子:3
- 作者:Layton, William;McLaughlin, Michael
- 通讯作者:McLaughlin, Michael
Analysis of Variable-Step/Non-autonomous Artificial Compression Methods
- DOI:10.1007/s00021-019-0429-2
- 发表时间:2018-09
- 期刊:
- 影响因子:1.3
- 作者:R. Chen;W. Layton;Michael McLaughlin
- 通讯作者:R. Chen;W. Layton;Michael McLaughlin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Layton其他文献
A Variable Stepsize, Variable Order Family of Low Complexity
低复杂度的可变步长、可变阶数系列
- DOI:
10.1137/19m1258153 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
V. DeCaria;A. Guzel;William Layton;Yi Li - 通讯作者:
Yi Li
On a 1/2-equation model of turbulence
湍流的 1/2 方程模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rui Fang;Weiwei Han;William Layton - 通讯作者:
William Layton
The Ramshaw-Mesina Hybrid Algorithm applied to the Navier Stokes Equations
Ramshaw-Mesina 混合算法应用于纳维斯托克斯方程
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aytekin Çıbık;Farjana Siddiqua;William Layton - 通讯作者:
William Layton
On Limiting Behavior of Contaminant Transport Models in Coupled Surface and Groundwater Flows
耦合地表水和地下水流中污染物迁移模型的极限行为
- DOI:
10.3390/axioms4040518 - 发表时间:
2015-11 - 期刊:
- 影响因子:2
- 作者:
William Layton;Marina Moraiti;Zhiyong Si;Catalin Trenchea - 通讯作者:
Catalin Trenchea
Adaptive parameter selection in nudging based data assimilation
- DOI:
10.1016/j.cma.2024.117526 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Aytekin Çıbık;Rui Fang;William Layton;Farjana Siddiqua - 通讯作者:
Farjana Siddiqua
William Layton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Layton', 18)}}的其他基金
Time Accurate Prediction of Fluid Motion
流体运动的时间精确预测
- 批准号:
2110379 - 财政年份:2021
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
Numerical Analysis of Non-Equilibrium Turbulence
非平衡湍流的数值分析
- 批准号:
1522267 - 财政年份:2015
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
Partitioning of Coupled Flow Problems
耦合流问题的划分
- 批准号:
1216465 - 财政年份:2012
- 资助金额:
$ 31.95万 - 项目类别:
Continuing Grant
Numerical Analysis, Analysis and Modeling of Fluid Motion
流体运动的数值分析、分析和建模
- 批准号:
0810385 - 财政年份:2008
- 资助金额:
$ 31.95万 - 项目类别:
Continuing Grant
Mathematical Development of Large Eddy Simulation of Turbulence
湍流大涡模拟的数学发展
- 批准号:
0508260 - 财政年份:2005
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
Large Eddy Simulation: Mathematical theory and Numerical Analysis
大涡模拟:数学理论与数值分析
- 批准号:
0207627 - 财政年份:2002
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
U.S.- Germany Cooperative Research: Finite Element Algorithm Development for 3-D Fluid Flow Problems
美德合作研究:3-D 流体流动问题的有限元算法开发
- 批准号:
9814115 - 财政年份:1999
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
Numerical Analysis of Large Eddy Simulation
大涡模拟数值分析
- 批准号:
9972622 - 财政年份:1999
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
U.S.-Venezuela Cooperative Research: Mathematical Modelling, Algorithm Development and Simulation of Aluminum Reduction Cells
美国-委内瑞拉合作研究:铝电解槽的数学建模、算法开发和模拟
- 批准号:
9805563 - 财政年份:1998
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Finite Element Methods For Incompressible, Viscous Flows
数学科学:不可压缩粘性流的有限元方法
- 批准号:
9400057 - 财政年份:1994
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
强子对撞机上一对希格斯粒子产生和衰变过程的精确理论预言
- 批准号:12375076
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
强子三维结构分布函数的理论预言
- 批准号:12375080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于机器学习方法设计和预言多组元合金体系材料的研究
- 批准号:92270104
- 批准年份:2022
- 资助金额:75.00 万元
- 项目类别:重大研究计划
次次领头阶anti-kT以及同类型的喷注函数和pA对撞中喷注向前产生的预言
- 批准号:12175016
- 批准年份:2021
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Staging Alzheimer disease with blood-based biomarkers
利用血液生物标志物对阿尔茨海默病进行分期
- 批准号:
10563212 - 财政年份:2021
- 资助金额:
$ 31.95万 - 项目类别:
Mtb and HIV/SIV antigen peptide signatures as blood biomarkers to detect early infection to active disease in young children and NHP
Mtb 和 HIV/SIV 抗原肽特征作为血液生物标志物,用于检测幼儿和 NHP 中活动性疾病的早期感染
- 批准号:
10160403 - 财政年份:2021
- 资助金额:
$ 31.95万 - 项目类别:
Mtb and HIV/SIV antigen peptide signatures as blood biomarkers to detect early infection to active disease in young children and NHP
Mtb 和 HIV/SIV 抗原肽特征作为血液生物标志物,用于检测幼儿和 NHP 中活动性疾病的早期感染
- 批准号:
10613462 - 财政年份:2021
- 资助金额:
$ 31.95万 - 项目类别:
Mtb and HIV/SIV antigen peptide signatures as blood biomarkers to detect early infection to active disease in young children and NHP
Mtb 和 HIV/SIV 抗原肽特征作为血液生物标志物,用于检测幼儿和 NHP 中活动性疾病的早期感染
- 批准号:
10400679 - 财政年份:2021
- 资助金额:
$ 31.95万 - 项目类别:
Time Accurate Prediction of Fluid Motion
流体运动的时间精确预测
- 批准号:
2110379 - 财政年份:2021
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant