III: Small: Collaborative Research: Summarizing Heterogeneous Crowdsourced & Web Streams Using Uncertain Concept Graphs

III:小:协作研究:异构众包总结

基本信息

  • 批准号:
    1814958
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Ubiquitous access to mobile and web technologies enables the public to share valuable information about their surroundings anywhere and anytime. For example, during an emergency or crisis people report needs from affected areas via social media as an alternative to the traditional 911 calls. This can be valuable information for a range of emergency service officials. However, the utilization of this data poses several computational challenges as it is generated in real time, is heterogeneous, highly unstructured, redundant, and sometimes unreliable. This project innovates in two specific directions to alleviate the challenges associated with large, streaming datasets during emergencies: (1) The project investigates new summarization approaches to handle noisy, unstructured data streams from multiple web sources in real time while accounting for the possibility of untrustworthy information, so that they can be fed into decision support systems of public services in a structured and machine-readable format. (2) The project develops and validates robust decision support systems for allocating critical resources to needed areas based on the structured summary reports. The evaluation plan includes collaboration with emergency responders and the communities they serve. The broader impacts of this research include the design of a generic methodology to extract, integrate, and summarize structured information from big data streams on the web for helping public services of future smart cities. The research team plans to share simulated datasets with an open source system for real-time decision support during emergency response exercises. This can assist in workforce training and also, help design novel educational projects of data science for social good.Formally, this research project investigates the theories behind a novel knowledge representation called Uncertain Concept Graph. The graph contains heterogeneous nodes based on key concepts of an application domain (e.g., regions, incidents, and information sources during a disaster). The graph has heterogeneous edges connecting these concept nodes, based on the inference of concept relationships using the extracted information from data streams (e.g., Twitter and news sources). The structure of the graph evolves over time and both nodes and edges can be added, deleted, or updated. An equivalent Bayesian Network is derived from the Uncertain Concept Graph describing the dependencies between the events captured in the graph at a given time instance. Based on the relationship edges in a graph state and the constructed Bayesian Network, an action recommendation system is created to support an application domain task (e.g., dispatching ambulance resources to incident-specific regions). To ensure robustness, this project develops and validates a novel anomaly identification and diagnosis approach using mode similarity to assess the correctness of current state of concept nodes and their relationships in the Uncertain Concept Graph at any time. The research team uses historical datasets of recent disasters to construct the graph and develop a demo system for domain evaluation, in order to recommend actions in emergency response for the city emergency services. The investigators are including the lessons learned and methodologies developed in their respective course curriculums.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无处不在的移动和网络技术使公众能够随时随地分享有关周围环境的有价值的信息。例如,在紧急情况或危机期间,人们通过社交媒体报告受影响地区的需求,作为传统 911 电话的替代方案。这对于一系列紧急服务官员来说可能是有价值的信息。然而,这些数据的利用带来了一些计算挑战,因为它是实时生成的、异构的、高度非结构化的、冗余的,有时甚至不可靠。该项目在两个具体方向上进行创新,以缓解紧急情况下与大型流式数据集相关的挑战:(1)该项目研究新的汇总方法来实时处理来自多个网络源的噪声、非结构化数据流,同时考虑到不可信的可能性信息,以便它们能够以结构化和机器可读的格式输入公共服务的决策支持系统。 (2) 该项目开发并验证强大的决策支持系统,用于根据结构化摘要报告将关键资源分配到所需领域。评估计划包括与应急响应人员及其服务的社区的合作。这项研究的更广泛影响包括设计一种通用方法,从网络大数据流中提取、整合和总结结构化信息,以帮助未来智慧城市的公共服务。研究团队计划与开源系统共享模拟数据集,以便在应急响应演习期间提供实时决策支持。这可以帮助劳动力培训,也可以帮助设计新颖的数据科学教育项目,以造福社会。从形式上来说,这个研究项目调查了一种称为不确定概念图的新颖知识表示背后的理论。该图包含基于应用程序域的关键概念(例如灾难期间的区域、事件和信息源)的异构节点。该图具有连接这些概念节点的异构边,基于使用从数据流(例如 Twitter 和新闻源)中提取的信息进行的概念关系推断。图的结构随着时间的推移而演变,节点和边都可以添加、删除或更新。等效的贝叶斯网络源自不确定概念图,描述了给定时间实例中图中捕获的事件之间的依赖关系。基于图状态中的关系边和构建的贝叶斯网络,创建动作推荐系统来支持应用程序域任务(例如,将救护车资源调度到特定事件区域)。为了确保鲁棒性,该项目开发并验证了一种新颖的异常识别和诊断方法,使用模式相似性来随时评估不确定概念图中概念节点及其关系的当前状态的正确性。研究团队利用近期灾难的历史数据集构建图表并开发用于领域评估的演示系统,以便为城市应急服务部门的应急响应行动提供建议。调查人员将吸取的经验教训和开发的方法纳入各自的课程中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mobilytics-Gym: A Simulation Framework for Analyzing Urban Mobility Decision Strategies
Designing Emergency Response Pipelines : Lessons and Challenges
设计应急响应管道:经验教训和挑战
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mukhopadhyay, Ayan;Pettet, Geoffrey;Kochenderfer, Mykel;Dubey, Abhishek
  • 通讯作者:
    Dubey, Abhishek
Data-Driven Detection of Anomalies and Cascading Failures in Traffic Networks
  • DOI:
    10.36001/phmconf.2019.v11i1.861
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanchita Basak;Afiya Ayman;Aron Laszka;A. Dubey;Bruno P. Leao
  • 通讯作者:
    Sanchita Basak;Afiya Ayman;Aron Laszka;A. Dubey;Bruno P. Leao
Incident management and analysis dashboard for fire departments: ICCPS demo
消防部门的事件管理和分析仪表板:ICCPS 演示
Analyzing the Cascading Effect of Traffic Congestion Using LSTM Networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhishek Dubey其他文献

Emergency Response Management Pipelines for Smart Cities
智慧城市应急响应管理管道
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Geoffrey Pettet;Ayan Mukhopadhyay;S. Vazirizade;Matthew Berger;Mykel J. Kochenderfer;Abhishek Dubey;Mohsen Vazirizade
  • 通讯作者:
    Mohsen Vazirizade
Towards a Product Line of Heterogeneous Distributed Applications
走向异构分布式应用程序的产品线
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Subhav Pradhan;Abhishek Dubey;W. Otte;G. Karsai;A. Gokhale
  • 通讯作者:
    A. Gokhale
DentalSegmentator: robust deep learning-based CBCT image segmentation
DentalSegmentator:基于深度学习的稳健 CBCT 图像分割
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Dot;A. Chaurasia;Guillaume Dubois;Charles Savoldelli;Sara Haghighat;Sarina Azimian;Ali Rahbar Taramsari;Gowri Sivaramakrishnan;Julien Issa;Abhishek Dubey;Thomas Schouman;L. Gajny
  • 通讯作者:
    L. Gajny
User-centric Distributed Route Planning in Smart Cities based on Multi-objective Optimization
基于多目标优化的智慧城市中以用户为中心的分布式路径规划
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francis Tiausas;Jose Talusan;Yu Ishimaki;Hayato Yamana;Hirozumi Yamaguchi;Shameek Bhattacharjee;Abhishek Dubey;Keiichi Yasumoto;Sajal K. Das
  • 通讯作者:
    Sajal K. Das
Development of Predictive Quantitative Structure-Activity Relationship Models of Epipodophyllotoxin Derivatives
表鬼臼毒素衍生物的预测定量构效关系模型的建立

Abhishek Dubey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abhishek Dubey', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2023 IEEE International Conference on Smart Computing
旅行:2023 年 IEEE 国际智能计算会议 NSF 学生旅行补助金
  • 批准号:
    2321961
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CAREER: Robust Online Decision Procedures for Societal Scale CPS
职业:社会规模 CPS 的稳健在线决策程序
  • 批准号:
    2238815
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
SCC-IRG Track 1: Mobility for all - Harnessing Emerging Transit Solutions for Underserved Communities
SCC-IRG 第 1 轨道:全民出行 - 为服务不足的社区利用新兴交通解决方案
  • 批准号:
    1952011
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Addressing Transit Accessibility and Public Health Challenges due to COVID-19
合作研究:RAPID:应对 COVID-19 带来的交通便利性和公共卫生挑战
  • 批准号:
    2029950
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
NeTS: JUNO2: Collaborative Research: STEAM: Secure and Trustworthy Framework for Integrated Energy and Mobility in Smart Connected Communities
NetS:JUNO2:协作研究:STEAM:智能互联社区中集成能源和移动性的安全可信框架
  • 批准号:
    1818901
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
US Ignite: Collaborative Research: Focus Area 1: Social Computing Platform for Multi-Modal Transit
US Ignite:合作研究:重点领域 1:多式联运社交计算平台
  • 批准号:
    1647015
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CPS-EAGER- Experiments with Smart City Hubs: Integration Platform for Human Cyber-Physical Systems In Smart Cities
CPS-EAGER- 智能城市中心实验:智能城市中人类网络物理系统的集成平台
  • 批准号:
    1528799
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了