Collaborative Research: Efficient Learning of Process-Structure-Property Models in Value-Driven Materials Design
协作研究:价值驱动材料设计中过程-结构-性能模型的有效学习
基本信息
- 批准号:1761406
- 负责人:
- 金额:$ 34.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research that will contribute knowledge towards the efficient discovery of new material systems. New materials are expected to have a significant impact in a broad range of application domains, ranging from biomedical systems to infrastructure and energy systems, improving the efficiencies of these systems and creating new capabilities that have so far been technologically out of reach. In current practice, however, the development of new materials is very costly and time-consuming because it relies mostly on physical testing and experimentation. Rather than focusing on the development of a specific new material, this award aims to develop modeling approaches and learning algorithms that allow for more efficient and effective exploration and discovery of new materials in general. The results of the investigation will help material scientists and engineers understand when to rely on mathematical analysis models or when to use physical experiments so that new information about so far unexplored materials can be gathered efficiently, and so that the materials design effort can be efficiently guided towards materials with desired and valuable properties. The research is expected to lead to a dramatic acceleration of the materials design process with significant competitive advantages to US industry. Through a university-industry consortium these innovations will be transferred into industrial practice. All new models and algorithms will be shared open-source, and the research findings, methods and tools will be incorporated in on-campus and on-line courses, with the potential to reach a large number of students, researchers and practitioners. The main research objective of this project is to critically evaluate the relative merits of different modeling formalisms and approaches for capturing and utilizing materials domain knowledge in a way that is most valuable to the designer. In the design process, multiple information sources will be combined, including bulk material tests, low-cost experimental assays, and physics-based multiscale Process-Structure-Property models. The hypothesis is that combining information from a portfolio of information sources with synergistic cost-accuracy trade-offs leads to a more efficient and effective design process. A second focus is on combining the information from these sources into integrative reduced-order Process-Structure-Property linkages. These linkages support learning through Bayesian updating as new information is acquired, and they are computationally inexpensive and therefore well-suited for searching the design space. The overall design framework will be applied and validated in the context of dual phase steels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持为有效发现新材料系统贡献知识的研究。 新材料预计将在从生物医学系统到基础设施和能源系统等广泛的应用领域产生重大影响,提高这些系统的效率并创造迄今为止技术上无法实现的新功能。 然而,在目前的实践中,新材料的开发非常昂贵且耗时,因为它主要依赖于物理测试和实验。该奖项的目的不是专注于特定新材料的开发,而是旨在开发建模方法和学习算法,以便更有效地探索和发现新材料。研究结果将帮助材料科学家和工程师了解何时依赖数学分析模型或何时使用物理实验,以便有效收集迄今为止未探索的材料的新信息,从而有效地指导材料设计工作寻找具有所需和有价值特性的材料。该研究预计将显着加速材料设计过程,为美国工业带来显着的竞争优势。通过大学-工业联盟,这些创新将转化为工业实践。 所有新的模型和算法都将开源共享,研究成果、方法和工具将纳入校园和在线课程,有可能惠及大量学生、研究人员和从业者。 该项目的主要研究目标是批判性地评估不同建模形式的相对优点以及以对设计师最有价值的方式捕获和利用材料领域知识的方法。在设计过程中,将结合多种信息源,包括散装材料测试、低成本实验分析和基于物理的多尺度过程-结构-性能模型。 假设将来自信息源组合的信息与协同成本准确性权衡相结合,可以实现更高效、更有效的设计过程。第二个重点是将来自这些来源的信息组合成集成的降阶过程-结构-属性链接。 这些链接支持在获取新信息时通过贝叶斯更新进行学习,并且它们的计算成本低廉,因此非常适合搜索设计空间。 整体设计框架将在双相钢的背景下应用和验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comparative Study of the Efficacy of Local/Global and Parametric/Nonparametric Machine Learning Methods for Establishing Structure–Property Linkages in High-Contrast 3D Elastic Composites
局部/全局和参数/非参数机器学习方法在高对比度 3D 弹性复合材料中建立结构-性能联系的有效性比较研究
- DOI:10.1007/s40192-019-00129-4
- 发表时间:2019-03-28
- 期刊:
- 影响因子:3.3
- 作者:Patxi Fern;ez;ez;Yuksel C. Yabansu;S. Kalidindi
- 通讯作者:S. Kalidindi
Evaluation of the influence of B and Nb microalloying on the microstructure and strength of 18% Ni maraging steels (C350) using hardness, spherical indentation and tensile tests
评价%20of%20the%20影响%20of%20B%20and%20Nb%20微合金化%20on%20the%20显微组织%20and%20强度%20of%2018%%20Ni%20马氏体时效%20钢%20(C350)%20使用%20硬度,%20球状
- DOI:10.1016/j.actamat.2021.117071
- 发表时间:2021-08
- 期刊:
- 影响因子:9.4
- 作者:Parvinian, Sepideh;Sievers, Daniel E.;Garmestani, Hamid;Kalidindi, Surya R.
- 通讯作者:Kalidindi, Surya R.
Protocols for studying the time-dependent mechanical response of viscoelastic materials using spherical indentation stress-strain curves
使用球形压痕应力-应变曲线研究粘弹性材料随时间变化的机械响应的协议
- DOI:10.1007/s11043-020-09472-y
- 发表时间:2020-10
- 期刊:
- 影响因子:2.5
- 作者:Abba, M. T.;Kalidindi, S. R.
- 通讯作者:Kalidindi, S. R.
New Insights into the Microstructural Changes During the Processing of Dual-Phase Steels from Multiresolution Spherical Indentation Stress–Strain Protocols
通过多分辨率球形压痕应力应变协议对双相钢加工过程中微观结构变化的新见解
- DOI:10.3390/met10010018
- 发表时间:2019-12-21
- 期刊:
- 影响因子:2.9
- 作者:A. Khosravani;C. Caliendo;S. Kalidindi
- 通讯作者:S. Kalidindi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Surya Kalidindi其他文献
Surya Kalidindi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Surya Kalidindi', 18)}}的其他基金
Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
- 批准号:
2221104 - 财政年份:2023
- 资助金额:
$ 34.36万 - 项目类别:
Standard Grant
A Machine Learning Framework for Bridging the Mechanical Responses of a Material at Multiple Structure Length Scales
用于桥接材料在多个结构长度尺度上的机械响应的机器学习框架
- 批准号:
2027105 - 财政年份:2020
- 资助金额:
$ 34.36万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Collaboration to Accelerate the Discovery of New Alloys for Additive Manufacturing
DMREF/合作研究:合作加速增材制造新合金的发现
- 批准号:
1435237 - 财政年份:2014
- 资助金额:
$ 34.36万 - 项目类别:
Standard Grant
iREU: Interdisciplinary Research Experience for Undergraduates in Medicine, Energy, and Advanced Manufacturing
iREU:医学、能源和先进制造领域本科生的跨学科研究经验
- 批准号:
1332417 - 财政年份:2013
- 资助金额:
$ 34.36万 - 项目类别:
Continuing Grant
GOALI:Deformation Mechanisms and Microstructure Evolution in Thermo-Mechanical Processing of Mg Alloys for Structural Automotive Applications
目标:汽车结构应用镁合金热机械加工中的变形机制和微观结构演变
- 批准号:
1332422 - 财政年份:2013
- 资助金额:
$ 34.36万 - 项目类别:
Continuing Grant
AHSS: Development of Novel Finite Element Simulation Tools that Implement Crystal Plasticity Constitutive Theories Using an Efficient Spectral Framework
AHSS:开发新型有限元仿真工具,使用高效的谱框架实现晶体塑性本构理论
- 批准号:
1341888 - 财政年份:2012
- 资助金额:
$ 34.36万 - 项目类别:
Continuing Grant
GOALI:Deformation Mechanisms and Microstructure Evolution in Thermo-Mechanical Processing of Mg Alloys for Structural Automotive Applications
目标:汽车结构应用镁合金热机械加工中的变形机制和微观结构演变
- 批准号:
1006784 - 财政年份:2010
- 资助金额:
$ 34.36万 - 项目类别:
Continuing Grant
iREU: Interdisciplinary Research Experience for Undergraduates in Medicine, Energy, and Advanced Manufacturing
iREU:医学、能源和先进制造领域本科生的跨学科研究经验
- 批准号:
1005090 - 财政年份:2010
- 资助金额:
$ 34.36万 - 项目类别:
Continuing Grant
REU Site: Drexel Research Experience in Advanced Materials (DREAM)
REU 网站:德雷塞尔先进材料研究经验 (DREAM)
- 批准号:
0649033 - 财政年份:2007
- 资助金额:
$ 34.36万 - 项目类别:
Continuing Grant
AHSS: Development of Novel Finite Element Simulation Tools that Implement Crystal Plasticity Constitutive Theories Using an Efficient Spectral Framework
AHSS:开发新型有限元仿真工具,使用高效的谱框架实现晶体塑性本构理论
- 批准号:
0727931 - 财政年份:2007
- 资助金额:
$ 34.36万 - 项目类别:
Continuing Grant
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于径向分级组织的氨气/二甲醚高效低污染燃烧机制及协同调控研究
- 批准号:52306155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
耦合高效光吸收与载流子分离的Ta3N5梯度同质结的构建及太阳能水分解性能研究
- 批准号:22309104
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于温盐对流强化的高效耐盐太阳能蒸馏机理研究
- 批准号:52376200
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
低共熔溶剂的碱性调控及高效分离油酚混合物的机制研究
- 批准号:22308216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 34.36万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 34.36万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346651 - 财政年份:2024
- 资助金额:
$ 34.36万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 34.36万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 34.36万 - 项目类别:
Standard Grant