The proximal augmented Lagrangian method for distributed and embedded nonsmooth composite optimization
用于分布式嵌入式非光滑复合优化的近端增广拉格朗日方法
基本信息
- 批准号:1809833
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large networks of dynamical systems that combine sensing, computing, and communication devices are ubiquitous in modern technology. One of the major challenges in networked systems is the development of fast and scalable methods for their analysis and design. Such systems involve large-scale interconnections of components, have rapidly-evolving structure and limitations on communication/processing power, and require real-time distributed control actions. These requirements make control strategies that rely on centralized information processing infeasible and motivate new classes of optimal control problems. In these, standard performance metrics are augmented with typically nonsmooth regularizers to promote desired structural features (e.g., low communication requirements) in the optimal controller. The broader impacts of the proposed work range from improved performance and reliability of power grid to systematic design of combination drug therapies for HIV treatment. The educational part of the proposal focuses on the development of new nonlinear and distributed systems curricula. The PI will develop new introductory courses aimed at attracting students from diverse engineering departments at senior undergraduate and first year graduate levels. The courses will emphasize practical applications, physical interpretations, structural features, and common themes in analysis and design of nonlinear and networked systems. The intellectual merit lies in the development of theory and techniques for distributed and embedded nonsmooth composite optimization. Structured optimal control and inverse problems, that arise especially when trying to identify and control dynamical representations of rapidly evolving systems in real-time, typically lead to optimization of functionals consisting of a sum of a smooth term and a nonsmooth regularizer. The PI's recent research will be leveraged to develop theoretical foundation and methods for solving these problems efficiently and reliably. The cornerstone of this proposal is the proximal augmented Lagrangian, a continuously differentiable function of primal and dual variables that enables the development of variety of first and second order methods for nonsmooth composite optimization. The PI will utilize structure of proximal operators associated with nonsmooth regularizers to develop efficient algorithms for large-scale distributed and embedded optimization and employ control-theoretic tools to establish their convergence rates. The proposed effort will furnish new classes of first and second order primal-dual algorithms for nonsmooth composite optimization, lead to significant advances in control-oriented and physically-viable modeling, and enable real-time distributed control of large-scale networks of dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结合感应,计算和通信设备的动力学系统的大型网络在现代技术中无处不在。网络系统中的主要挑战之一是开发其分析和设计的快速和可扩展方法。这样的系统涉及组件的大规模互连,具有快速发展的结构和通信/处理能力的局限性,并且需要实时分布式控制操作。这些要求使控制策略依靠集中式信息处理不可行,并激发新的最佳控制问题类别。在这些中,标准性能指标通常使用非平滑的正规化器增强,以促进最佳控制器中所需的结构特征(例如,沟通需求低)。拟议工作的更广泛的影响范围从提高的性能和电网的可靠性到对HIV治疗的组合药物疗法的系统设计。该提案的教育部分着重于开发新的非线性和分布式系统课程。 PI将开发新的入门课程,旨在吸引高级本科和第一年研究生水平的不同工程系的学生。这些课程将在非线性和网络系统的分析和设计中强调实用应用,物理解释,结构特征以及共同主题。智力优点在于开发分布式和嵌入式非平滑复合材料优化的理论和技术。结构化的最佳控制和反问题,尤其是在试图实时识别和控制快速发展系统的动态表示时会出现的,通常会导致优化由平稳期限和非平滑正常使用器组成的功能。 PI最近的研究将被利用,以开发理论基础和方法来有效,可靠地解决这些问题。该提案的基石是近端的增强拉格朗日,这是原始和双重变量的不断区分功能,它可以开发多种一阶和二阶方法,以进行非平面复合优化。 PI将利用与非平滑正规化器相关的近端运算符结构来开发用于大规模分布式和嵌入式优化的有效算法,并使用控制理论工具来确定其收敛速率。 The proposed effort will furnish new classes of first and second order primal-dual algorithms for nonsmooth composite optimization, lead to significant advances in control-oriented and physically-viable modeling, and enable real-time distributed control of large-scale networks of dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance of noisy Nesterov's accelerated method for strongly convex optimization problems
- DOI:10.23919/acc.2019.8814680
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Hesameddin Mohammadi;Meisam Razaviyayn;M. Jovanović
- 通讯作者:Hesameddin Mohammadi;Meisam Razaviyayn;M. Jovanović
Convergence and Sample Complexity of Gradient Methods for the Model-Free Linear–Quadratic Regulator Problem
- DOI:10.1109/tac.2021.3087455
- 发表时间:2019-12
- 期刊:
- 影响因子:6.8
- 作者:Hesameddin Mohammadi;A. Zare;M. Soltanolkotabi;M. Jovanovi'c
- 通讯作者:Hesameddin Mohammadi;A. Zare;M. Soltanolkotabi;M. Jovanovi'c
Topology Identification via Growing a Chow-Liu Tree Network
通过生长 Chow-Liu 树网络进行拓扑识别
- DOI:10.1109/cdc.2018.8619207
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hassan-Moghaddam, Sepideh;Jovanovic, Mihailo R.
- 通讯作者:Jovanovic, Mihailo R.
On the asymptotic stability of proximal algorithms for convex optimization problems with multiple non-smooth regularizers
- DOI:10.23919/acc53348.2022.9867197
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ibrahim Kurban Özaslan;Sepideh Hassan-Moghaddam;M. Jovanović
- 通讯作者:Ibrahim Kurban Özaslan;Sepideh Hassan-Moghaddam;M. Jovanović
On the Exponential Convergence Rate of Proximal Gradient Flow Algorithms
- DOI:10.1109/cdc.2018.8618968
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Sepideh Hassan-Moghaddam;M. Jovanović
- 通讯作者:Sepideh Hassan-Moghaddam;M. Jovanović
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihailo Jovanovic其他文献
Mihailo Jovanovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihailo Jovanovic', 18)}}的其他基金
CRII: CPS: Information-Constrained Cyber-Physical Systems for Supermarket Refrigerator Energy and Inventory Management
CRII:CPS:超市冰箱能源和库存管理的信息受限网络物理系统
- 批准号:
1657100 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Distributionally Robust Control and Incentives with Safety and Risk Constraints
具有安全和风险约束的分布式鲁棒控制和激励
- 批准号:
1708906 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Sparsity-promoting optimal design of large-scale networks of dynamical systems
大规模动力系统网络的稀疏性优化优化设计
- 批准号:
1739210 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Low-complexity Stochastic Modeling and Control of Turbulent Shear Flows
湍流剪切流的低复杂度随机建模和控制
- 批准号:
1739243 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Sparsity-promoting optimal design of large-scale networks of dynamical systems
大规模动力系统网络的稀疏性优化优化设计
- 批准号:
1407958 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Low-complexity Stochastic Modeling and Control of Turbulent Shear Flows
湍流剪切流的低复杂度随机建模和控制
- 批准号:
1363266 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Design of Structured Distributed Controllers with Application to Large-Scale Vehicular Formations
合作研究:应用于大规模车辆编队的结构化分布式控制器设计算法
- 批准号:
0927720 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Enabling Methods for Modeling and Control of Transitional and Turbulent Wall-Bounded Shear Flows
职业:过渡和湍流壁界剪切流的建模和控制方法
- 批准号:
0644793 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
基于协同增强子的遗传变异交互作用在胃癌发生中的关联及机制研究
- 批准号:82304224
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PDT疗效系统增强型硫代尼罗蓝光敏剂的构建及其抗恶性实体瘤研究
- 批准号:22368036
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于核酸四面体“信号增强塔”的微针分子识别系统在炎症因子风暴多层面实时监测中的研究和应用
- 批准号:22374029
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
原子层沉积Pt表面等离激元增强氧化镓单晶薄膜的紫外探测性能研究
- 批准号:62304129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
催化/传热协同诱导高熵Li2TiO3晶界调控及释氚增强机制
- 批准号:52302075
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Studentship
STTR Phase I: Semantically-Enabled Augmented Reality for Manufacturing
STTR 第一阶段:用于制造的语义增强现实
- 批准号:
2335533 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
I-Corps: Integrating Complex Augmented Reality Systems in Nursing Education
I-Corps:将复杂的增强现实系统集成到护理教育中
- 批准号:
2349446 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
NATWORK: Net-Zero self-adaptive activation of distributed self-resilient augmented services
NATWORK:分布式自恢复增强服务的净零自适应激活
- 批准号:
10101189 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
EU-Funded
SBIR Phase I: Novel Camera-Projector Device Leveraging Markerless Skin Registration and Projected Augmented Reality Software to Enable Navigation for Minimally Invasive Procedures
SBIR 第一阶段:新型相机投影仪设备利用无标记皮肤配准和投影增强现实软件实现微创手术导航
- 批准号:
2321906 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant