Collaborative Research: Multimodal Sensing and Analytics at Scale: Algorithms and Applications
协作研究:大规模多模态传感和分析:算法和应用
基本信息
- 批准号:1807660
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Finding highly correlated latent factors in multimodal signals and data: Scalable algorithms and applications in sensing, imaging, and language processingAbstract: Multimodal signals and data arise naturally in many walks of science and engineering, and our digital society presents ever-increasing opportunities to collect and extract useful information from such data. For example, brain magnetic resonance imaging and electro-encephalography are two modes of sensing brain activity that can offer different "views" of the same set of patients (entities). Co-occurrence frequencies of a given set of words in different languages is another example. Crime, poverty, welfare, income, tax, school, unemployment, and other types of social data offer different views of a given set of municipalities. Integrating multiple views to extract meaningful common information is of great interest, and finds a vast amount of timely applications -- in brain imaging, machine translation, landscape change detection in remote sensing, and social science research, to name a few. However, existing multiview analytics tools -- notably (generalized) canonical correlation analysis [(G)CCA] -- are struggling to keep pace with the size of today's datasets, and the problem is only getting worse. Furthermore, the complex structure and dynamic nature of some of the underlying phenomena are not accounted for in classical GCCA. This project will provide much needed scalable and flexible computational tools for GCCA-based multimodal sensing and analytics, thereby benefiting a large variety of scientific and engineering applications. It will produce a framework allowing for plug-and-play incorporation of application-specific prior information, and distributed implementation. Beyond linear and batch GCCA, nonlinear GCCA and streaming GCCA will be considered. These are appealing and timely for many applications, but associated computational tools are sorely missing.In terms of theory and methods, many key aspects of GCCA (such as convergence properties, distributed implementation, and streaming variants) are still poorly understood. The research will provide a set of high-performance computational tools that are backed by advanced optimization theory and rigorous convergence guarantees. The research will evolve along the following synergistic thrusts: 1) scalable and stochastic GCCA algorithms; 2) distributed, streaming and nonlinear GCCA algorithms; and 3) validation, using a series of timely and important applications in remote sensing, brain imaging, natural language processing, and sensor array processing. Devising scalable, flexible, streaming, and nonlinear GCCA algorithms is very well-motivated for modern sensing and analytics problems which involve rapidly increasing amounts of data with unknown underlying dynamics. Using GCCA for large-scale dynamic and complex data also poses very challenging and exciting modeling and optimization problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在多模式信号和数据中找到高度相关的潜在因素:可扩展的算法和应用中的传感,成像和语言处理方法:多模式信号和数据自然出现在许多科学和工程步行中,而我们的数字社会却在这些数据中始终从此类数据中收集和提取有用信息。例如,大脑磁共振成像和电脑摄影是感应大脑活动的两种模式,可以提供同一组患者(实体)的不同“视图”。用不同语言的一组单词的共发生频率是另一个示例。犯罪,贫困,福利,收入,税收,学校,失业和其他类型的社交数据提供了一套特定市政当局的不同看法。集成多种观点以提取有意义的共同信息引起了人们的极大兴趣,并且发现了大量及时的应用 - 在大脑成像,机器翻译,遥感中的景观变化检测和社会科学研究中,仅举几例。 但是,现有的多视分析工具 - 尤其是(广义)规范相关分析[(g)CCA] - 正在努力与当今数据集的大小保持同步,而且问题越来越严重。此外,在经典的GCCA中未考虑某些基本现象的复杂结构和动态性质。该项目将为基于GCCA的多模式感测和分析提供急需的可扩展和灵活的计算工具,从而使各种各样的科学和工程应用受益。它将产生一个框架,允许插入插件的特定于应用程序的先验信息和分布式实现。除线性和批处理GCCA外,还将考虑非线性GCCA和流媒体GCCA。对于许多应用程序,这些都很有吸引力,但相关的计算工具却非常缺少。在理论和方法方面,GCCA的许多关键方面(例如收敛属性,分布式实现和流媒体变体)仍然很熟悉。该研究将提供一组高性能计算工具,这些工具得到了高级优化理论和严格的合并保证的支持。该研究将沿以下协同推力发展:1)可扩展和随机GCCA算法; 2)分布式,流和非线性GCCA算法; 3)验证,使用一系列及时且重要的应用程序在遥感,大脑成像,自然语言处理和传感器阵列处理中进行验证。对于现代感测和分析问题,精心促进可扩展,灵活,流和非线性GCCA算法的动机非常有能力,这些问题涉及迅速增加的数据,并具有未知的潜在动态。使用GCCA进行大规模的动态和复杂数据也提出了非常具有挑战性,令人兴奋的建模和优化问题。该奖项反映了NSF的法定任务,并且使用基金会的智力优点和更广泛的审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tensor Completion From Regular Sub-Nyquist Samples
- DOI:10.1109/tsp.2019.2952044
- 发表时间:2020-01-01
- 期刊:
- 影响因子:5.4
- 作者:Kanatsoulis, Charilaos I.;Fu, Xiao;Akcakaya, Mehmet
- 通讯作者:Akcakaya, Mehmet
Reliable Detection of Unknown Cell-Edge Users via Canonical Correlation Analysis
- DOI:10.1109/twc.2020.2980511
- 发表时间:2020-03
- 期刊:
- 影响因子:10.4
- 作者:M. S. Ibrahim;N. Sidiropoulos
- 通讯作者:M. S. Ibrahim;N. Sidiropoulos
Tensor-Based Channel Estimation for Dual-Polarized Massive MIMO Systems
- DOI:10.1109/tsp.2018.2873506
- 发表时间:2018-05
- 期刊:
- 影响因子:5.4
- 作者:Cheng Qian;Xiao Fu;N. Sidiropoulos;Ye Yang
- 通讯作者:Cheng Qian;Xiao Fu;N. Sidiropoulos;Ye Yang
Joint Graph Embedding and Alignment with Spectral Pivot
- DOI:10.1145/3447548.3467377
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Paris A. Karakasis;Aritra Konar;N. Sidiropoulos
- 通讯作者:Paris A. Karakasis;Aritra Konar;N. Sidiropoulos
Bilinear factorizations subject to monomial equality constraints via tensor decompositions
通过张量分解受单项式等式约束的双线性分解
- DOI:10.1016/j.laa.2021.03.022
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Sørensen, Mikael;De Lathauwer, Lieven;Sidiropoulos, Nicholaos D.
- 通讯作者:Sidiropoulos, Nicholaos D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolaos Sidiropoulos其他文献
EXISTENCE OF SOLUTIONS TO INDEFINITE QUASILINEAR ELLIPTIC PROBLEMS OF P-Q-LAPLACIAN TYPE
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Nikolaos Sidiropoulos - 通讯作者:
Nikolaos Sidiropoulos
Nikolaos Sidiropoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolaos Sidiropoulos', 18)}}的其他基金
Blind Carbon Copy on Dirty Paper: Seamless Spectrum Underlay made Practical
脏纸上的盲文复写:无缝频谱底层变得实用
- 批准号:
2118002 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III: Small: A Submodular Framework for Scalable Graph Matching with Performance Guarantees
III:小型:具有性能保证的可扩展图匹配的子模块框架
- 批准号:
1908070 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Robust and Scalable Volume Minimization-based Matrix Factorization for Sensing and Clustering
用于传感和聚类的鲁棒且可扩展的基于体积最小化的矩阵分解
- 批准号:
1852831 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Robust and Scalable Volume Minimization-based Matrix Factorization for Sensing and Clustering
用于传感和聚类的鲁棒且可扩展的基于体积最小化的矩阵分解
- 批准号:
1608961 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CIF: Small: Feasible Point Pursuit for Non-convex QCQPs: Algorithms and Signal Processing Applications
CIF:小:非凸 QCQP 的可行点追踪:算法和信号处理应用
- 批准号:
1525194 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Workshop on Big Data: From Signal Processing to Systems Engineering; to be held at Arlington Virginia, March 21-22, 2013.
大数据研讨会:从信号处理到系统工程;
- 批准号:
1327148 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
BIGDATA: Mid-Scale: DA: Collaborative Research: Big Tensor Mining: Theory, Scalable Algorithms and Applications
BIGDATA:中型:DA:协作研究:大张量挖掘:理论、可扩展算法和应用
- 批准号:
1247632 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Wideband cognitive sensing from a few bits
来自几个比特的宽带认知感知
- 批准号:
1231504 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Spectral Tweets: A Community Paradigm for Spatio-temporal Cognitive Sensing and Access
频谱推文:时空认知感知和访问的社区范式
- 批准号:
1247885 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
From Medium Access to Physical Layer: An Integrated DSP Framework for Wireless Packet Networks
从介质访问到物理层:无线分组网络的集成 DSP 框架
- 批准号:
0096164 - 财政年份:2000
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
基于ROS-铁死亡-糖酵解调控的纳米粒子用于肿瘤微环境和免疫调节的多模式结直肠癌治疗研究
- 批准号:52372262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多模式影像的侧支循环及脑血管反应性在急性缺血性卒中低灌注病灶个体化差异中的作用及机制研究
- 批准号:82301494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市道路环境下车辆驾驶权动态切换对多驾驶模式混合交通流稳定性影响研究
- 批准号:52372297
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
撞击载荷下PBX多模式耦合损伤与力学性能劣化机制研究
- 批准号:12302446
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于机器学习和多源观测的太阳风暴传播模式研究
- 批准号:42330210
- 批准年份:2023
- 资助金额:229.00 万元
- 项目类别:重点项目
相似海外基金
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Evaluation of the neurovascular unit in the setting of pathogenesis and treatment of autosomal dominant Alzheimer disease
常染色体显性阿尔茨海默病发病机制和治疗中神经血管单位的评估
- 批准号:
10572223 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231078 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
- 批准号:
2334665 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Multimodal Mapping of Gene Isoforms by Electromicrofluidic Manipulation
合作研究:通过电微流体操作进行基因异构体的多模式图谱
- 批准号:
2303927 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant