Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials

合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中

基本信息

  • 批准号:
    2231078
  • 负责人:
  • 金额:
    $ 32.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Design of multimodal microstructures has emerged as a promising strategy for the discovery and development of metallic materials with a great strength-ductility combination for structural applications. Such a design strategy is of particular importance for elemental or single-phase metals. However, current manufacturing methodologies for multimodal material fabrications face a major technical challenge of controlling the three-dimensional microstructural heterogeneity. This collaborative research award supports fundamental research towards understanding the mechanisms of how nanoparticles assemble on their own in laser/powder-based additive manufacturing (AM) to alter grain nucleation and growth and achieve effective manufacturing of multimodal materials with desired microstructural heterogeneity. By including special nanoparticles in powder feedstock and plausibly achieving self-assembly of added nanoparticles in solidification fronts, this fabrication means, capable of influencing grain sizes and geometries if successful, will lead to a manufacturing technology for a large variety of multimodal metallic materials with improved properties towards critical applications in aerospace, automotive, military, and biomedical industries. This joint project will also provide a training platform for a diversified student body through research opportunities and will broaden participations from women and underrepresented students in research. The theme and results of this project will be utilized to enhance the engineering partnership with local community colleges around the region of the two institutions.The overall goal of this research is to gain fundamental understanding of the mechanisms that govern nanoparticle self-assembly behavior, microstructure evolution, and property enhancement in AM of multimodal titanium and its alloys using a laser heat source and powder feedstock. The effect of nanoparticle self-assembly at the liquid-crystal interface on solidification front stability and grain nucleation and growth during laser AM will first be investigated using three-dimensional phase-field simulation incorporating CALPHAD databases with experimental characterizations of grain changes. Next, using micromechanical modeling and crystal plasticity simulations, the team will elucidate the modified and improved strength-ductility combinations as affected by the three-dimensional distribution of multimodal grain structures. With the knowledge of grain modification and three-dimensional grain structure designs, metal AM experiments, using both powder-bed fusion (PBF) and directed energy deposition (DED), while integrating nanoparticle self-assembly, will be systematically designed and performed to investigate and establish the process-microstructure-property relationship. The new knowledge of nanoparticle self-assembly at the liquid-crystal interfaces during rapid solidification as in PBF and DED will be beneficial to other fusion-based manufacturing technologies, including welding, casting, and electron-beam manufacturing. Furthermore, basic knowledge of process-microstructure-property relationship in metal AM will lead to the development of novel multimodal materials with potentially unprecedented mechanical properties for widespread applications. This project is jointly funded by the Advanced Manufacturing program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多模态微结构设计已成为发现和开发具有良好强度-延展性组合的结构应用金属材料的有前景的策略。这种设计策略对于元素或单相金属特别重要。然而,当前多模态材料制造的制造方法面临着控制三维微观结构异质性的重大技术挑战。该合作研究奖支持基础研究,旨在了解纳米颗粒如何在基于激光/粉末的增材制造 (AM) 中自行组装,以改变晶粒成核和生长,并实现具有所需微观结构异质性的多模态材料的有效制造。通过在粉末原料中加入特殊的纳米颗粒,并在凝固前沿实现添加纳米颗粒的自组装,这种制造方法能够影响晶粒尺寸和几何形状,如果成功的话,将带来一种用于多种多峰金属材料的制造技术,并具有改进的性能。航空航天、汽车、军事和生物医学行业关键应用的特性。该联合项目还将通过研究机会为多元化的学生群体提供培训平台,并将扩大女性和代表性不足的学生对研究的参与。该项目的主题和结果将用于加强与两个机构所在地区当地社区大学的工程合作伙伴关系。这项研究的总体目标是对控制纳米粒子自组装行为、微观结构的机制有基本的了解。使用激光热源和粉末原料进行多峰钛及其合金的增材制造的演变和性能增强。首先将使用结合 CALPHAD 数据库和晶粒变化实验表征的三维相场模拟来研究激光增材制造过程中纳米颗粒自组装对凝固前沿稳定性以及晶粒成核和生长的影响。接下来,利用微观机械建模和晶体塑性模拟,研究小组将阐明受多峰晶粒结构三维分布影响的修改和改进的强度-延展性组合。凭借晶粒改性和三维晶粒结构设计的知识,将系统地设计和执行金属增材制造实验,使用粉末床熔融(PBF)和定向能量沉积(DED),同时集成纳米颗粒自组装,以研究并建立工艺-微观结构-性能关系。 PBF 和 DED 等快速凝固过程中液晶界面纳米粒子自组装的新知识将有利于其他基于熔合的制造技术,包括焊接、铸造和电子束制造。此外,金属增材制造中工艺-微观结构-性能关系的基础知识将导致新型多模态材料的开发,这些材料具有潜在的前所未有的机械性能,可广泛应用。该项目由先进制造计划和刺激竞争研究既定计划 (EPSCoR) 共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiliang Liao其他文献

Yiliang Liao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
  • 批准号:
    82301139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
整合素β8亚基在猪树突状细胞免疫识别与活化过程中的作用与机制研究
  • 批准号:
    32373026
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于小胶质细胞极化分子网络的藏药鬼箭锦鸡儿抗缺血性脑中风功效组分和整合机制研究
  • 批准号:
    82374147
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人乳头瘤病毒通过整合宿主细胞基因组促进宫颈癌细胞PD-L1高表达的分子机制研究
  • 批准号:
    32360041
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325837
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了