Spin and Spatial Correlations of Few-Body Systems

少体系统的自旋和空间相关性

基本信息

  • 批准号:
    1806259
  • 负责人:
  • 金额:
    $ 29.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Ultracold systems comprised of a few isolated trapped atoms permit quantum correlations and entanglement to be studied with an unprecedented degree of control. Using analytical and numerical techniques, this project studies correlations between spatial positions and spins in such ultracold atomic few-body systems. These theoretical studies are conducted in close collaboration with experimentalists exploring ultracold matter. The project aims at developing a microscopic, bottom-up understanding of the correlations in different prototype quantum systems, where theoretical predictions can be confronted with experimental results. The long term goals of this branch of physics include the development of significantly improved imaging systems and sensors, which could have widespread applications. As part of this project, graduate and undergraduate students will be trained in science and technology areas, in which there currently exists a high demand across the US. While conducting this research, the students will develop subsidiary skills in high performance computing. The idea behind the first study, which is motivated by on-going experiments in Jochim's group in Heidelberg, is conceptually simple. Preparing an initial few-fermion state in an external trap and then inducing an expansion by weakening the trap potential, the group will study how correlations of the initial state get imprinted on the time-evolved wave packet. They will try to develop methods to distinguish between "trivial" correlations induced by the particle statistics and "non-trivial" correlations due to the short-range contact interactions. Likewise, they will try to identify correlations which are signatures of the initial state, and contrast them with those developed during the expansion. The second and third topics are interrelated. They consider ultracold few-atom systems in the presence of synthetic gauge fields, which introduce a coupling between the spin and the linear momentum of an atom. The spin-momentum coupling leads to non-quadratic single-particle dispersions, which modify the large interparticle-distance-asymptotics of oscillatory scattering wave functions and exponentially decaying bound state wave functions. The second topic entails developing two-particle scattering frameworks for various spin-momentum coupling schemes that account for the correlations between the spin and momentum. The anticipated findings are expected to significantly modify the standard textbook framework of partial wave scattering. The third topic entails determining bound state spectra and wave functions of few-atom states in the presence of spin-momentum coupling. Particular emphasis will be put on the enhancement of the correlations in the near-threshold regime. Spin-momentum coupling is an essential component in a myriad of applications including the study of (fractional) topological insulators, interferometry and gravimetry, spintronic devices, and the creation of Majorana fermions and their use in quantum computers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由少数孤立的被困原子组成的超代理系统允许以前所未有的对照程度对量子相关性和纠缠进行研究。使用分析和数值技术,该项目研究了这种超级原子少数身体系统中空间位置和旋转之间的相关性。这些理论研究是与探索超低物质的实验者密切合作进行的。该项目旨在建立对不同原型量子系统中相关性的显微镜,自下而上的理解,在该系统中,理论预测可以面对实验结果。该物理学分支的长期目标包括开发显着改进的成像系统和传感器,这可能具有广泛的应用。作为该项目的一部分,研究生和本科生将接受科学技术领域的培训,目前在美国的需求量很高。在进行这项研究时,学生将发展高性能计算的辅助技能。 概念上很简单。在外部陷阱中准备最初的几个特里米昂状态,然后通过削弱陷阱电势来诱导扩展,该组将研究初始状态的相关性如何印在时间发展的波浪包上。他们将尝试开发方法,以区分粒子统计引起的“琐碎”相关性和由于短距离接触相互作用而引起的“非平凡”相关性。同样,他们将尝试识别是初始状态的签名的相关性,并将它们与扩展过程中开发的相关性进行对比。第二和第三个主题相互关联。他们考虑在存在合成量规场的情况下超过几个原子系统,这引入了原子的自旋和线性动量之间的耦合。自旋摩膜耦合导致非季度单粒子分散体,它改变了振荡散射波函数的大型颗粒间 - 距离 - 异构体,并呈指数衰减的结合状态波函数。第二个主题需要为各种自旋摩肌耦合方案开发两粒子散射框架,以解释自旋和动量之间的相关性。预期的发现有望显着修改部分波浪散射的标准教科书框架。第三个主题需要在存在自旋摩托耦合的情况下确定几个原子状态的结合状态光谱和波浪函数。特别强调将增强近阈值制度的相关性。旋转摩托摩梅素耦合是无数应用中的重要组成部分,包括研究(分数)拓扑绝缘子的研究,干涉和重量测定法,自旋发展,并创建Majorana Fermions及其在量子计算机中的使用。这一奖项反映了NSF的法定任务,并通过评估了构成的范围。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation of resonant scattering between ultracold heteronuclear Feshbach molecules
超冷异核 Feshbach 分子之间共振散射的观察
  • DOI:
    10.1103/physreva.100.042706
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wang, Fudong;Ye, Xin;Guo, Mingyang;Blume, D.;Wang, Dajun
  • 通讯作者:
    Wang, Dajun
Electric-field-induced helium-helium resonances
  • DOI:
    10.1103/physreva.99.033416
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Q. Guan;D. Blume
  • 通讯作者:
    Q. Guan;D. Blume
Undamped Rabi oscillations due to polaron-emitter hybrid states in a nonlinear photonic waveguide coupled to emitters
  • DOI:
    10.1103/physreva.106.013722
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. Talukdar;D. Blume
  • 通讯作者:
    J. Talukdar;D. Blume
Ultrafast manipulation of the weakly bound helium dimer
  • DOI:
    10.1038/s41567-020-01081-3
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    M. Kunitski;Q. Guan;H. Maschkiwitz;J. Hahnenbruch;S. Eckart;S. Zeller;A. Kalinin;M. Schöffler;L. Schmidt;T. Jahnke;D. Blume;R. Dörner
  • 通讯作者:
    M. Kunitski;Q. Guan;H. Maschkiwitz;J. Hahnenbruch;S. Eckart;S. Zeller;A. Kalinin;M. Schöffler;L. Schmidt;T. Jahnke;D. Blume;R. Dörner
Two emitters coupled to a bath with Kerr-like nonlinearity: Exponential decay, fractional populations, and Rabi oscillations
  • DOI:
    10.1103/physreva.105.063501
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. Talukdar;D. Blume
  • 通讯作者:
    J. Talukdar;D. Blume
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Doerte Blume其他文献

Coupled-channel pseudopotential description of the Feshbach resonance in two dimensions
二维 Feshbach 共振的耦合通道赝势描述
  • DOI:
    10.1103/physreva.73.060701
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    K. Kanjilal;Doerte Blume
  • 通讯作者:
    Doerte Blume
Trapped polarized Fermi gas at unitarity
单一性下被俘获的极化费米气体
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doerte Blume
  • 通讯作者:
    Doerte Blume
Degeneracies in trapped two-component Fermi gases.
被捕获的双组分费米气体的简并性。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    K. Daily;D. Rakshit;Doerte Blume
  • 通讯作者:
    Doerte Blume
Dilute Bose gases interacting via power-law potentials
稀释玻色气体通过幂律势相互作用
  • DOI:
    10.1103/physreva.77.032703
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Kalas;Doerte Blume
  • 通讯作者:
    Doerte Blume
Engineering dynamical phase diagrams with driven lattices in spinor gases
旋量气体中驱动晶格的工程动力学相图
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. O. Austin;Z. N. Hardesty;Qingze Guan;C. Binegar;Doerte Blume;R. J. Lewis;Yingmei Liu
  • 通讯作者:
    Yingmei Liu

Doerte Blume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Doerte Blume', 18)}}的其他基金

Dynamics of Matter and Light-Matter Systems
物质和光物质系统动力学
  • 批准号:
    2110158
  • 财政年份:
    2021
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Standard Grant
Travel Support for Students to Attend 2019 DAMOP Conference, May 27-31, 2019 in Milwaukee, WI.
为参加 2019 年 5 月 27 日至 31 日在威斯康星州密尔沃基举行的 2019 年 DAMOP 会议的学生提供差旅支持。
  • 批准号:
    1902451
  • 财政年份:
    2019
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Standard Grant
Few-Body Physics with Ultra Cold Atoms
超冷原子的少体物理
  • 批准号:
    1745142
  • 财政年份:
    2017
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Continuing Grant
Temperature Dependence and Dynamics of Cold Few-Atom Systems
冷少原子系统的温度依赖性和动力学
  • 批准号:
    1762949
  • 财政年份:
    2017
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Continuing Grant
Few-Body Physics with Ultra Cold Atoms
超冷原子的少体物理
  • 批准号:
    1509892
  • 财政年份:
    2015
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Continuing Grant
Temperature Dependence and Dynamics of Cold Few-Atom Systems
冷少原子系统的温度依赖性和动力学
  • 批准号:
    1415112
  • 财政年份:
    2014
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Continuing Grant
Universal and Non-Universal Few-Body Physics in the Ultracold
超冷中的普遍和非普遍少体物理学
  • 批准号:
    1205443
  • 财政年份:
    2012
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Continuing Grant
Microscopic Description of Strongly Correlated Bose and Fermi Gases
强相关玻色和费米气体的微观描述
  • 批准号:
    0855332
  • 财政年份:
    2009
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Continuing Grant
Monte Carlo Treatment of Bose and Fermi Gases
玻色和费米气体的蒙特卡罗处理
  • 批准号:
    0555316
  • 财政年份:
    2006
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Continuing grant
Monte Carlo Treatment of Atomic Gases - Low-Dimensionality and Impurities
原子气体的蒙特卡罗处理 - 低维和杂质
  • 批准号:
    0331529
  • 财政年份:
    2003
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Continuing grant

相似国自然基金

基于多组学技术研究活性代谢物2-HyCA通过调控CA1酶的空间构象及活性在改善脓毒症相关性脑病的作用机制
  • 批准号:
    82302441
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市“职住服”空间关系影响下的居民出行碳排放核算及机理认知研究
  • 批准号:
    52308046
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
能力培育项目FAPESP空间相关性下骤旱事件演变特征及其对气候变化的响应机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    60 万元
  • 项目类别:
交通分布起讫两端空间相关性和时间相关性的联合建模
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
晶状体mtDNA氧化损伤修复与线粒体自噬的空间差异及其调控干预在年龄相关性白内障发病中的作用
  • 批准号:
    82171038
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Temporal and spatial correlations in mortality dynamics: Applications to mortality/longevity risk management
死亡率动态的时间和空间相关性:在死亡/长寿风险管理中的应用
  • 批准号:
    RGPIN-2021-02409
  • 财政年份:
    2022
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Discovery Grants Program - Individual
Administrative Supplement: A Profile of Spatial Abilities in People with Down Syndrome and Their Correlations with Everyday Behavior
行政补充:唐氏综合症患者的空间能力概况及其与日常行为的相关性
  • 批准号:
    10601373
  • 财政年份:
    2022
  • 资助金额:
    $ 29.42万
  • 项目类别:
Temporal and spatial correlations in mortality dynamics: Applications to mortality/longevity risk management
死亡率动态的时间和空间相关性:在死亡/长寿风险管理中的应用
  • 批准号:
    RGPIN-2021-02409
  • 财政年份:
    2021
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis for spatial correlations of AGNs by using a new generation galaxy formation model
利用新一代星系形成模型分析活动星系核的空间相关性
  • 批准号:
    20H01950
  • 财政年份:
    2020
  • 资助金额:
    $ 29.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating the functional role of the pulvinar-postrhinal circuit in visuospatial attention
研究枕后-鼻后回路在视觉空间注意力中的功能作用
  • 批准号:
    10357892
  • 财政年份:
    2020
  • 资助金额:
    $ 29.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了