Universal and Non-Universal Few-Body Physics in the Ultracold

超冷中的普遍和非普遍少体物理学

基本信息

  • 批准号:
    1205443
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Few-body physics has played a prominent role in atomic, molecular and nuclear physics since the early days of quantum mechanics. A microscopic description of universal and non-universal aspects of ultracold s-wave interacting atomic few-body systems with up to six particles is planned. Specifically, a hyperspherical explicitly correlated Gaussian approach (HECG) applicable to four- and five-body systems with finite orbital angular momentum will be develoepd. Together with the "standard" explicitly correlated Gaussian approach, this approach will be applied to few-atom systems with various symmetries and large s-wave scattering lengths. Moreover, the physics of few-body systems in periodic structures (a periodic box or an optical lattice) will be investigated. Lastly, microscopic finite-temperature approaches will be developed and applied.The algorithm developments are expected to have implications for a variety of subdisciplines within physics and chemistry. The successful generalization of the HECG approach to states with finite angular momentum is expected to provide access to single- and multi-channel scattering observables. As such, the developed approach may find applications in nuclear and chemical physics, in addition to applications in atomic and molecular physics. The applications to ultracold few-body systems will significantly enhance our understanding of fundamental, yet highly correlated, few-body states, which govern much of the dynamics of ultracold quantum gases. Students will be actively involved in all aspects of the proposed research activities including the planning of the fundamental studies, the calculations and the interpretation and dissimination of the results. The research training of undergraduate and graduate students in atomic theory with emphasis on analytical and numerical techniques prepares them for a wide variety of future pursuits. Students' classroom experiences will be improved by incorporating some of the latest advances.
自从量子力学的早期以来,很少有身体物理学在原子,分子和核物理学中发挥了重要作用。已计划对超低S波相互作用的原子量系统的普遍和非普遍方面的微观描述,最多六个颗粒。具体而言,适用于具有有限轨道角动量的四体和五体系统的超明确相关的高斯方法(HECG)将是DeveloEPD。连同“标准”显式相关的高斯方法一起,该方法将应用于具有各种对称性和较大S波散射长度的几个原子系统。此外,将研究周期性结构(周期盒或光学晶格)中几个体系统的物理学。最后,将开发和应用微观有限温度的方法。预计该算法的开发对物理和化学中的各种子学科有影响。 HECG对具有有限角动量的状态的成功概括有望提供对单通道散射可观察物的访问。因此,除了在原子和分子物理学中的应用外,开发的方法还可以在核和化学物理学中找到应用。超低少体系统的应用将显着增强我们对基本且高度相关的几个身体状态的理解,这些状态控制着超低量子气体的大部分动力学。学生将积极参与拟议的研究活动的各个方面,包括基本研究的计划,计算以及结果的解释和避免。原子理论的本科生和研究生的研究培训重点是分析和数值技术,为他们做好了多种未来的追求。通过合并一些最新进展,可以改善学生的课堂经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Doerte Blume其他文献

Coupled-channel pseudopotential description of the Feshbach resonance in two dimensions
二维 Feshbach 共振的耦合通道赝势描述
  • DOI:
    10.1103/physreva.73.060701
    10.1103/physreva.73.060701
  • 发表时间:
    2005
    2005
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    K. Kanjilal;Doerte Blume
    K. Kanjilal;Doerte Blume
  • 通讯作者:
    Doerte Blume
    Doerte Blume
Trapped polarized Fermi gas at unitarity
单一性下被俘获的极化费米气体
  • DOI:
  • 发表时间:
    2008
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doerte Blume
    Doerte Blume
  • 通讯作者:
    Doerte Blume
    Doerte Blume
Degeneracies in trapped two-component Fermi gases.
被捕获的双组分费米气体的简并性。
Dilute Bose gases interacting via power-law potentials
稀释玻色气体通过幂律势相互作用
  • DOI:
    10.1103/physreva.77.032703
    10.1103/physreva.77.032703
  • 发表时间:
    2007
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Kalas;Doerte Blume
    R. Kalas;Doerte Blume
  • 通讯作者:
    Doerte Blume
    Doerte Blume
Engineering dynamical phase diagrams with driven lattices in spinor gases
旋量气体中驱动晶格的工程动力学相图
  • DOI:
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. O. Austin;Z. N. Hardesty;Qingze Guan;C. Binegar;Doerte Blume;R. J. Lewis;Yingmei Liu
    J. O. Austin;Z. N. Hardesty;Qingze Guan;C. Binegar;Doerte Blume;R. J. Lewis;Yingmei Liu
  • 通讯作者:
    Yingmei Liu
    Yingmei Liu
共 6 条
  • 1
  • 2
前往

Doerte Blume的其他基金

Dynamics of Matter and Light-Matter Systems
物质和光物质系统动力学
  • 批准号:
    2110158
    2110158
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Travel Support for Students to Attend 2019 DAMOP Conference, May 27-31, 2019 in Milwaukee, WI.
为参加 2019 年 5 月 27 日至 31 日在威斯康星州密尔沃基举行的 2019 年 DAMOP 会议的学生提供差旅支持。
  • 批准号:
    1902451
    1902451
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Spin and Spatial Correlations of Few-Body Systems
少体系统的自旋和空间相关性
  • 批准号:
    1806259
    1806259
  • 财政年份:
    2018
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Few-Body Physics with Ultra Cold Atoms
超冷原子的少体物理
  • 批准号:
    1745142
    1745142
  • 财政年份:
    2017
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Temperature Dependence and Dynamics of Cold Few-Atom Systems
冷少原子系统的温度依赖性和动力学
  • 批准号:
    1762949
    1762949
  • 财政年份:
    2017
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Few-Body Physics with Ultra Cold Atoms
超冷原子的少体物理
  • 批准号:
    1509892
    1509892
  • 财政年份:
    2015
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Temperature Dependence and Dynamics of Cold Few-Atom Systems
冷少原子系统的温度依赖性和动力学
  • 批准号:
    1415112
    1415112
  • 财政年份:
    2014
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Microscopic Description of Strongly Correlated Bose and Fermi Gases
强相关玻色和费米气体的微观描述
  • 批准号:
    0855332
    0855332
  • 财政年份:
    2009
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Monte Carlo Treatment of Bose and Fermi Gases
玻色和费米气体的蒙特卡罗处理
  • 批准号:
    0555316
    0555316
  • 财政年份:
    2006
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Continuing grant
    Continuing grant
Monte Carlo Treatment of Atomic Gases - Low-Dimensionality and Impurities
原子气体的蒙特卡罗处理 - 低维和杂质
  • 批准号:
    0331529
    0331529
  • 财政年份:
    2003
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Continuing grant
    Continuing grant

相似国自然基金

星载SAR非沿迹场景匹配曲线成像理论与方法
  • 批准号:
    62331007
  • 批准年份:
    2023
  • 资助金额:
    237 万元
  • 项目类别:
    重点项目
线性热超构材料的非互易传热性能
  • 批准号:
    12302171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长链非编码RNA lnRPT通过YB1/eEF1调控心肌纤维化的功能和机理研究
  • 批准号:
    82370274
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
生物钟基因Nr1d1通过调控NLRP3焦亡通路抑制非酒精性脂肪性肝炎进展的机制研究
  • 批准号:
    82300652
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微通道非共沸混合工质流动沸腾传热机理及模型预测
  • 批准号:
    52376149
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Non-classical properties of few-particle systems with synthetic spin-orbit coupling
具有合成自旋轨道耦合的少粒子系统的非经典性质
  • 批准号:
    20J10006
    20J10006
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
    Grant-in-Aid for JSPS Fellows
Study on the class of games that are solved with a few information
研究用少量信息解决的博弈类别
  • 批准号:
    20K01549
    20K01549
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
High charge lase wakefield acceleration using high intensity few-cycle laser by ultra-wide band amplification
使用高强度少周期激光通过超宽带放大进行高电荷激光尾场加速
  • 批准号:
    19K20602
    19K20602
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
    Grant-in-Aid for Early-Career Scientists
Exploring extreme response of solids exposed to intense few-cycle mid-infrared electric fields
探索暴露于强少周期中红外电场的固体的极端响应
  • 批准号:
    17H04816
    17H04816
  • 财政年份:
    2017
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
    Grant-in-Aid for Young Scientists (A)
Deepening transition state concept and control of reaction kinetics from a few body systems to complex reaction networks
深化过渡态概念和反应动力学控制,从少数身体系统到复杂的反应网络
  • 批准号:
    15KT0055
    15KT0055
  • 财政年份:
    2015
  • 资助金额:
    $ 25.5万
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)