Collaborative Research: An Enzyme-free Amplification Technique for Ultrasensitive ELISA of Disease Biomarkers

合作研究:疾病生物标志物超灵敏 ELISA 的无酶扩增技术

基本信息

  • 批准号:
    1804742
  • 负责人:
  • 金额:
    $ 19.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2018-11-30
  • 项目状态:
    已结题

项目摘要

Technologies for diagnosis of diseases are essential to the improvement of our standard of living. Increasing detection sensitivity of a diagnostic technology can enable earlier diagnosis of diseases especially cancers and infectious diseases, thus improving treatment outcomes. The goal of this project is to establish a highly sensitive diagnostic platform through the development of a nanoparticle-based signal amplification technique. The broader impacts of the proposed research program include multidisciplinary training for graduate and undergraduate students particularly from underrepresented groups, as well as outreach activities such as mentoring local high-school students and student exchange between two institutes in summer.Enzyme-linked immunosorbent assay (ELISA) technology has been extensively used in research labs and clinical diagnostics for decades. However, its limit of detection has not been substantially improved in recent years. The proposed work seeks to develop a novel enzyme-free signal amplification technique that can substantially enhance the detection sensitivity of ELISA. This technique relies on the release of millions of tiny nanoparticles preloaded in gold vesicles. Each released nanoparticle can catalyze colorimetric reaction more effectively than a commonly-used enzyme in an ELISA. By substituting enzymes in a conventional ELISA with such nanoparticles-encapsulated gold vesicles, an enzyme-free ELISA with substantially enhanced sensitivity is established. To optimize the signal amplification system and thus enhance the detection sensitivity of associated enzyme-free ELISA, physicochemical properties of both nanoparticles and gold vesicles will be carefully controlled. To achieve the goal of this project, following research aims will be pursued: 1) Building the nanoparticles based signal amplification system; 2) Establishing the enzyme-free ELISA; and 3) Applying the enzyme-free ELISA to detecting human blood samples spiked with biomarker standards. The signal amplification technique is expected to impact the general field of in-vitro diagnostics and find a broad range of applications in biomedicine. This project will benefit the engagement of graduate and undergraduate students, especially women and minorities, into research. The research will also be integrated into outreach activities for K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
疾病诊断技术对于提高我们的生活水平至关重要。提高诊断技术的检测灵敏度可以实现疾病尤其是癌症和传染病的早期诊断,从而改善治疗结果。该项目的目标是通过开发基于纳米颗粒的信号放大技术来建立高度灵敏的诊断平台。拟议研究计划的更广泛影响包括对研究生和本科生(特别是来自代表性不足群体的学生)进行多学科培训,以及外展活动,例如指导当地高中生以及夏季两个机构之间的学生交流。酶联免疫吸附测定(ELISA) )技术几十年来已广泛应用于研究实验室和临床诊断。然而,近年来其检出限并未得到实质性提高。这项工作旨在开发一种新型的无酶信号放大技术,可以显着提高 ELISA 的检测灵敏度。该技术依赖于金囊泡中预装的数百万个微小纳米颗粒的释放。每个释放的纳米颗粒都可以比 ELISA 中常用的酶更有效地催化比色反应。通过用这种纳米颗粒封装的金囊泡替代传统 ELISA 中的酶,建立了灵敏度大大提高的无酶 ELISA。为了优化信号放大系统,从而提高相关无酶 ELISA 的检测灵敏度,需要仔细控制纳米颗粒和金囊泡的理化性质。为实现本项目的目标,将实现以下研究目标: 1)构建基于纳米颗粒的信号放大系统; 2)建立无酶ELISA; 3) 应用无酶 ELISA 检测添加了生物标志物标准品的人体血液样本。信号放大技术预计将影响体外诊断的一般领域,并在生物医学中找到广泛的应用。该项目将有利于研究生和本科生,特别是女性和少数族裔参与研究。该研究还将纳入针对 K-12 学生的外展活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhihong Nie其他文献

New insights into the effect of interparticle friction on the critical state friction angle of granular materials
颗粒间摩擦对颗粒材料临界态摩擦角影响的新见解
  • DOI:
    10.1016/j.compgeo.2019.103105
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Jian Gong;Jinfeng Zou;Lianheng Zhao;Liang Li;Zhihong Nie
  • 通讯作者:
    Zhihong Nie
Fourier-shape-based reconstruction of rock joint profile with realistic unevenness and waviness features
基于傅里叶形状的岩石节理剖面重建,具有真实的不均匀性和波纹度特征
  • DOI:
    10.1007/s11771-019-4239-8
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Zhihong Nie;Xiang Wang;Dong-liang Huang;Lian-heng Zhao
  • 通讯作者:
    Lian-heng Zhao
Centimeter-Scale Superlattices of Three-Dimensionally Orientated Plasmonic Dimers with Highly Tunable Collective Properties
具有高度可调集体特性的三维定向等离子体二聚体的厘米级超晶格
  • DOI:
    10.1021/acsnano.1c11219
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Shunsheng Ye;Huaining Zha;Yifan Xia;Wenhao Dong;Fan Yang;Chenglin Yi;Jing Tao;Xiaoxue Shen;Dong Yang;Zhihong Nie
  • 通讯作者:
    Zhihong Nie
Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy
用于生物医学递送和治疗的精密纳米颗粒的工程异质性
  • DOI:
    10.1002/viw.20200067
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Di Zheng;Kuikun Yang;Zhihong Nie
  • 通讯作者:
    Zhihong Nie
Effects of thermal therapy combined with pamidronate disodium on pain associated with bone metastases: A randomized control trial (RCT) study
热疗法联合帕米膦酸二钠对骨转移相关疼痛的影响:一项随机对照试验 (RCT) 研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fanlei Kong;Zhihong Nie;Zhongpo Liu;Shibin Hou;J. Ji
  • 通讯作者:
    J. Ji

Zhihong Nie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhihong Nie', 18)}}的其他基金

Design and self-assembly of amphiphilic supracolloidal analogues of bimolecular and trimolecular compounds
双分子和三分子化合物的两亲性超胶体类似物的设计和自组装
  • 批准号:
    1808689
  • 财政年份:
    2018
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
NSF/FDA Scholar-in-Residence at FDA: Understanding the Bioactivity and Safety of Metal and Metal Oxide Nanoparticles Used in Medical Devices
NSF/FDA 驻 FDA 学者:了解医疗器械中使用的金属和金属氧化物纳米颗粒的生物活性和安全性
  • 批准号:
    1541654
  • 财政年份:
    2016
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Molecular-mimicking Self-assembly of Inorganic Nanoparticles Tethered with Charged Block Copolymers
带电嵌段共聚物束缚无机纳米粒子的分子模拟自组装
  • 批准号:
    1505839
  • 财政年份:
    2015
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
CAREER: Biomimetic Self-assembly of Polymer-inorganic Hybrid Nanocompartments with Biomedical Delivery Applications
职业:聚合物-无机混合纳米室的仿生自组装与生物医学输送应用
  • 批准号:
    1255377
  • 财政年份:
    2013
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

光驱动自由基酶的催化机理研究和理性设计
  • 批准号:
    22337006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
单原子纳米酶的第二配位球调制及其抗肿瘤性能研究
  • 批准号:
    52302342
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
嵌合肽-DNA酶:构建、性质及应用研究
  • 批准号:
    22374070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
去泛素化酶OTUB1通过稳定CREBH调控TREM2+脂相关巨噬细胞的功能在NASH中的机制研究
  • 批准号:
    82370589
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
  • 批准号:
    82373030
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310396
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310395
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Defining the role of persistent DNA bridges in tumor-intrinsic immune activation in hereditary breast and ovarian cancer
确定持久性 DNA 桥在遗传性乳腺癌和卵巢癌肿瘤内在免疫激活中的作用
  • 批准号:
    10606942
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
Collaborative Research: Enzyme-Mimicking Catalysts for Cellulose Processing
合作研究:用于纤维素加工的模拟酶催化剂
  • 批准号:
    2246635
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Investigating the role of an EIF2B3 variant as an Alzheimer's disease risk modifier
研究 EIF2B3 变体作为阿尔茨海默病风险调节剂的作用
  • 批准号:
    10680062
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了