Elucidating Pressure- and Field-Tuned Phases and Multifunctionality in Magnetic Spinels

阐明磁性尖晶石中的压力和场调谐相和多功能性

基本信息

项目摘要

Non-technical abstract"Magnetically responsive" materials have properties that can be tuned with pressure and magnetic field. Such materials exhibit a range of scientifically interesting and technologically useful properties. Understanding the physical mechanisms responsible for these exotic properties is not only important scientifically, but is an essential prerequisite to optimizing these materials for use in technological applications. This project combines the use of high pressures, high magnetic fields, and visible laser light to identify and control the underlying mechanisms responsible for magnetically responsive behavior in a select group of materials. The diverse techniques employed in this research, including high-pressure techniques using diamond anvil cell technology, high-magnetic-field and low-temperature methods, optical and laser techniques, and materials growth methods, provide the graduate student researchers outstanding training for a diverse range of careers in academia, industry, or national laboratories. This project is also dedicated to imparting scientific literacy and enthusiasm for science in both the general public and K-12 students, through public lectures on science, middle-school scientific demonstrations, and lab tours that highlight the excitement of the materials studied, and the scientific techniques used in this project. This project also includes efforts to increase the number and mentoring of underrepresented PhDs in STEM fields; to improve scientific communication skills of PhD students; and to provide guidance to current PhD students concerning their career paths.Technical abstractMagnetically frustrated materials, such as the magnetic spinels (chemical formula AB2X4), exhibit a range of diverse ground state phases and phenomena that can be sensitively tuned with pressure and magnetic field, including spin-spiral, charge-ordered, multiferroic, and spin/orbital-liquid phases. The exceptional tunability of the spinels and other magnetically responsive materials make them excellent scientific laboratories in which myriad phases and phenomena can be sensitively controlled and studied. Yet, there is limited microscopic understanding of the microscopic magnetostructural effects that lead to the important pressure- and field-tuned behaviors these materials exhibit, due largely to the absence of spectroscopic information that elucidates how the spin- and lattice-dynamics of magnetically frustrated materials change as functions of magnetic field and pressure. The purpose of this research is to fill this important gap in our understanding by using inelastic light scattering techniques to study the spin- and lattice-excitations of select magnetically frustrated materials while field- and pressure-tuning through their diverse phases. The goals of this research are to clarify the relationship between competing phases observed in different phase regions, to study as-yet-unexplored phase regimes and phenomena in magnetically frustrated materials as functions of temperature, pressure-, and magnetic-field, and to realize exotic new phases of matter that are of scientific or technological importance. This research also sheds light on the general conditions that are conducive to enhancing magnetoresponsive susceptibilities in magnetically frustrated materials; such information is an essential prerequisite to controlling these materials for useful technological applications. In addition to providing diverse technical training to several graduate students, this research will impact the broader community through laboratory tours aimed at exposing K 12 students and teachers to the excitement of materials research and optics-related demonstrations to middle schools students; through efforts to improve the numbers and mentoring of underrepresented PhD students; and through scientific communication skills training of PhD students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术抽象“磁响应式”材料具有可以用压力和磁场调整的特性。这种材料具有一系列科学有趣且具有技术用处的特性。了解负责这些异国特性的物理机制不仅在科学上是重要的,而且是优化这些用于技术应用的材料的必要先决条件。该项目结合了高压,高磁场和可见激光的使用,以识别和控制一组材料组中负责磁反应迅速行为的潜在机制。这项研究中采用的多种技术,包括使用钻石砧细胞技术,高磁场和低温方法,光学和激光技术以及材料增长方法的高压技术,为研究生研究人员提供了针对学术界,工业,工业,国家实验室的职业生涯范围的杰出培训。 该项目还致力于通过有关科学,中学科学演示的公开讲座以及强调研究材料的兴奋以及该项目中使用的科学技术的公开讲座,并通过公开科学,中学科学演示和实验室旅行来赋予科学的科学素养和热情。 该项目还包括增加STEM领域中代表性不足的PHD的数量和指导;提高博士生的科学沟通技巧;并为当前的博士学位学生提供有关其职业道路的指导。技术抽象震惊的挫败材料,例如磁性尖晶石(化学配方AB2X4),表现出一系列可通过压力和磁场来敏感地调节的多样化的基础状态和现象,包括旋转式,电荷,多发性,多发性,多发性,旋转和旋转蛋白酶,且旋转蛋白酶。 尖晶石和其他磁性敏感材料的特殊可调节性使它们成为了出色的科学实验室,其中可以敏感地控制和研究各种阶段和现象。 然而,对微观磁结构效应的显着理解有限,这些材料表现出重要的压力和现场调节行为,这在很大程度上是由于缺乏光谱信息,从而阐明了磁性挫败材料的自旋和链式 - 动力学如何随着磁场和压力的功能而变化。 这项研究的目的是通过使用非弹性光散射技术来研究精选的磁性沮丧材料的自旋和晶格口气,同时通过其各种相位进行野外和压力调节,以填补这一重要差距。 这项研究的目标是阐明在不同阶段区域观察到的竞争阶段之间的关系,研究磁性沮丧的材料中尚未阐述的相位体制和现象,作为温度,压力和磁场的功能,并实现具有科学或技术重要性的物质新阶段。这项研究还阐明了有利于增强磁挫败材料中磁敏感性的一般条件。此类信息是控制这些材料以进行有用的技术应用的必要先决条件。 除了向几位研究生提供多样化的技术培训外,这项研究还将通过旨在使K 12学生和老师兴奋的材料研究和与光学相关的演示的实验室旅行对更广泛的社区产生影响;通过改善代表性不足的博士生的努力和指导;通过博士生的科学沟通技巧培训。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来评估值得支持的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soft mode behavior and evidence for pressure-induced magnetostructural effects in Pr2O3
Pr2O3 中压力引起的磁结构效应的软模式行为和证据
  • DOI:
    10.1103/physrevresearch.2.043169
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Slimak, J. E.;Sethi, A.;Kolodiazhnyi, T.;Cooper, S. L.
  • 通讯作者:
    Cooper, S. L.
Real-space magnetic imaging of the multiferroic spinels MnV2O4 and Mn3O4
  • DOI:
    10.1103/physrevmaterials.2.064407
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    B. Wolin;Xiaofei Wang;T. Naibert;S. Gleason;G. MacDougall;H. Zhou;H. Zhou;S. Cooper;R. Budakian
  • 通讯作者:
    B. Wolin;Xiaofei Wang;T. Naibert;S. Gleason;G. MacDougall;H. Zhou;H. Zhou;S. Cooper;R. Budakian
Temperature and magnetic field dependent Raman study of electron-phonon interactions in thin films of Bi2Se3 and Bi2Te3 nanoflakes
  • DOI:
    10.1103/physrevb.101.245431
  • 发表时间:
    2020-06-22
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Buchenau, Soeren;Scheitz, Sarah;Ruebhausen, Michael
  • 通讯作者:
    Ruebhausen, Michael
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

S. Lance Cooper其他文献

S. Lance Cooper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('S. Lance Cooper', 18)}}的其他基金

Exploration of Pressure- and Field-Tuned Phenomena and Phases in Mn- and V-based Spinels
锰基和钒基尖晶石中压力和场调谐现象和相的探索
  • 批准号:
    1464090
  • 财政年份:
    2015
  • 资助金额:
    $ 45.56万
  • 项目类别:
    Continuing Grant
Pressure- and Field-Tuned Spectroscopy of Strongly Spin-Lattice-Coupled Materials
强自旋晶格耦合材料的压力和场调谐光谱
  • 批准号:
    0856321
  • 财政年份:
    2009
  • 资助金额:
    $ 45.56万
  • 项目类别:
    Standard Grant
Spectroscopy of Pressure- and Field-Induced Insulator-Metal Transitions: Exploring Charge- and Spin-Organization in Complex Oxides and Magnetic Semiconductors
压力和场引起的绝缘体-金属转变的光谱学:探索复杂氧化物和磁性半导体中的电荷和自旋组织
  • 批准号:
    0244502
  • 财政年份:
    2003
  • 资助金额:
    $ 45.56万
  • 项目类别:
    Standard Grant
Inelastic Light Scattering Studies of Kondo Insulators and Other Low Carrier Density Kondo Systems
Kondo 绝缘体和其他低载流子密度 Kondo 系统的非弹性光散射研究
  • 批准号:
    9700716
  • 财政年份:
    1997
  • 资助金额:
    $ 45.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

红外辐射协同交变压力对蓝莓干燥过程水分迁移与花色苷释放的影响机理及优化调控
  • 批准号:
    32301724
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于技术压力视角的智能技术在医疗健康服务中双面效应的研究
  • 批准号:
    72361034
  • 批准年份:
    2023
  • 资助金额:
    26 万元
  • 项目类别:
    地区科学基金项目
抗压力的神经脑肠轴机制
  • 批准号:
    32371213
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机械力通过Piezo1与细胞骨架作用环路抑制成纤维细胞线粒体分裂在压力性尿失禁发生中的机制研究
  • 批准号:
    82301828
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于组蛋白修饰精准调控肝血窦内皮细胞分泌的COL4影响门静脉压力的机制研究
  • 批准号:
    82300711
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Targeting urinary tract dysfunctions after spinal cord injury with epidural stimulation
通过硬膜外刺激治疗脊髓损伤后的尿路功能障碍
  • 批准号:
    10656916
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
  • 批准号:
    10735637
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Addressing sleep health disparities from within: A community-engaged study to understanding sleep and cardiometabolic disease risk among women of color
从内部解决睡眠健康差异:一项社区参与的研究,旨在了解有色人种女性的睡眠和心脏代谢疾病风险
  • 批准号:
    10815470
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了