Pressure- and Field-Tuned Spectroscopy of Strongly Spin-Lattice-Coupled Materials
强自旋晶格耦合材料的压力和场调谐光谱
基本信息
- 批准号:0856321
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL ABSTRACTStrong coupling between atomic spins and the lattice in "strongly correlated" materials is associated with many scientifically important and technologically useful phenomena, including orbital ordering, multiferroic behavior, and magnetic-field- and pressure-tunable phase transitions. This individual investigator award supports a project that will involve the growth, characterization, and optical spectroscopic measurement of various single-crystal ruthenium-oxide, magnesium-oxide, and vanadium-oxide materials whose properties have highly enhanced ("colossal") responses to applied pressure and/or magnetic field, making these materials promising candidates for the next generation of "functional" materials and devices. The goal of this project is to understand the microscopic origin of these exotic and useful properties, by employing magnetic-field- and pressure-tuned optical spectroscopy to investigate the manner in which spin-lattice coupling and spin/lattice dynamics evolve through various low temperature, high-magnetic-field, and high pressure phases of these materials. Among the anticipated outcomes of this project are (i) elucidation of the microscopic origin of the colossal sensitivities these materials exhibit in response to high pressures and applied magnetic fields; (ii) insights into how to grow new materials with enhanced functional properties; and (iii) high quality single-crystal samples of correlated materials that will be made available to others in the scientific community. This project will also provide broad training to 2 graduate students in single-crystal growth and pressure- and magnetic-field-tuned optical spectroscopy, and will be used as part of an outreach program to interest K-12 students in the sciences via tours of the high field/high pressure optical laboratory. NON-TECHNICAL ABSTRACTIn many oxide-based materials, there is a particularly strong interaction between the atomic magnetic moments (which can be thought of as small bar magnets attached to the atoms) and the ordered "lattice" structure of the atoms; one important consequence of this strong interaction is that applied pressures or magnetic fields can be used to sensitively control the mobility of the electrons in, the magnetic properties of, and even the structural shape of, these materials. As a consequence, these "highly tunable" materials are promising candidates for the next generation of multi-functional switches, sensors, shape-memory structures, and other useful electronic/magnetic devices. This individual investigator award supports a project that will involve the growth of these novel oxide-based materials, and the study of the basic mechanisms responsible for their exotic properties by scattering light (i.e., "photons") from the materials while tuning the materials' properties through their novel phases found at high pressures and high magnetic fields. The goals of this project are to better understand the conditions responsible for the "highly tunable" properties of these materials (i) to elucidate how matter behaves under novel environmental conditions, and (ii) to develop new materials with enhanced functional properties. This project will also provide broad training to 2 graduate students in materials growth and state-of-the-art light scattering methods, and will be used as part of an outreach program to interest K-12 students in the sciences via tours of the high field/high pressure optical laboratory.
原子旋转与“密切相关”材料中的晶格之间的技术摘要链耦合与许多科学重要和技术上有用的现象有关,包括轨道订购,多表皮行为以及磁场和压力低调相变。 该个别研究者奖支持将涉及各种单晶光晶石,氧化物,镁氧化镁和钒氧化物材料的增长,表征和光谱测量的项目,其特性具有高度增强(“巨大”)对应用压力和/或磁场的响应,使这些材料具有良好的候选材料,使这些材料成为下一代材料的功能和功能,并且功能是校园的功能和功能,并在功能上均具有功能和功能。 该项目的目的是通过采用磁场和压力调节的光谱仪来了解这些异国情调和有用特性的显微镜起源,以研究通过各种低温,高磁场以及这些材料的高压阶段演变的自旋晶格耦合以及自旋晶格耦合以及旋转/晶格动力学的方式。 该项目的预期结果之一是(i)这些材料响应高压和施加的磁场而显示出巨大敏感性的微观起源; (ii)深入了解如何具有增强功能性能的新材料; (iii)相关材料的高质量单晶样品将提供给科学界的其他人。 该项目还将为两名单晶增长以及压力和磁场调整的光学光谱的研究生提供广泛的培训,并将通过高场/高压光学实验室参观在科学中引起K-12学生感兴趣的外展计划的一部分。非技术抽象素许多基于氧化物的材料,原子磁矩(可以认为是附着在原子上的小磁体)与原子的“晶格”结构之间存在特别强烈的相互作用。这种强烈相互作用的一个重要结果是,可以使用施加的压力或磁场来敏感地控制电子中电子的迁移率,这些材料的结构形状,甚至结构形状。 结果,这些“高度可调”的材料是下一代多功能开关,传感器,形状记忆结构和其他有用的电子/磁性设备的有希望的候选人。 该单独的研究者奖支持将涉及这些新型氧化物材料的生长的项目,以及通过从材料中散射光(即“光子”)来研究其外来特性的基本机制,同时通过在高压和高磁场上发现的新型相位来调整材料的特性。 该项目的目标是更好地了解这些材料(i)的“高度可调”特性的条件(i),以阐明物质在新的环境条件下的行为,(ii)开发具有增强功能性能的新材料。 该项目还将为两名材料增长和最先进的光散射方法提供广泛的培训,并将作为外展计划的一部分,通过高场/高压光学实验室的参观来使K-12学生感兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
S. Lance Cooper其他文献
S. Lance Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('S. Lance Cooper', 18)}}的其他基金
Elucidating Pressure- and Field-Tuned Phases and Multifunctionality in Magnetic Spinels
阐明磁性尖晶石中的压力和场调谐相和多功能性
- 批准号:
1800982 - 财政年份:2018
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Exploration of Pressure- and Field-Tuned Phenomena and Phases in Mn- and V-based Spinels
锰基和钒基尖晶石中压力和场调谐现象和相的探索
- 批准号:
1464090 - 财政年份:2015
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Spectroscopy of Pressure- and Field-Induced Insulator-Metal Transitions: Exploring Charge- and Spin-Organization in Complex Oxides and Magnetic Semiconductors
压力和场引起的绝缘体-金属转变的光谱学:探索复杂氧化物和磁性半导体中的电荷和自旋组织
- 批准号:
0244502 - 财政年份:2003
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Inelastic Light Scattering Studies of Kondo Insulators and Other Low Carrier Density Kondo Systems
Kondo 绝缘体和其他低载流子密度 Kondo 系统的非弹性光散射研究
- 批准号:
9700716 - 财政年份:1997
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
相似国自然基金
基于公共数据挖掘的工业场地风险关键驱动因子作用机制研究
- 批准号:42307576
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
滨海高盐低渗场地LNAPLs污染物赋存状态识别与运移机制研究
- 批准号:42372335
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于CPTU原位测试的污染场地土-膨润土隔离墙工程特性评价及防渗性能辨识研究
- 批准号:42302320
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
- 批准号:52378474
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
交通循环荷载高填黄土场地桩-土界面力学性能弱化与累积沉降研究
- 批准号:42362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Electric field-tuned unconventional superconductivity in nanoelectronic devices
纳米电子器件中电场调节的非常规超导性
- 批准号:
2485664 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Studentship
STTR Phase I: Tuned Miniaturized Point-Field Detectors as Contactless Current Sensor for Post-silicon Power Electronics
STTR 第一阶段:调谐小型化点场检测器作为后硅电力电子器件的非接触式电流传感器
- 批准号:
1843330 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Elucidating Pressure- and Field-Tuned Phases and Multifunctionality in Magnetic Spinels
阐明磁性尖晶石中的压力和场调谐相和多功能性
- 批准号:
1800982 - 财政年份:2018
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Exploration of Pressure- and Field-Tuned Phenomena and Phases in Mn- and V-based Spinels
锰基和钒基尖晶石中压力和场调谐现象和相的探索
- 批准号:
1464090 - 财政年份:2015
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Multinuclear localized spectroscopy at ultra-high field wholebody MRI
超高场全身 MRI 的多核定域光谱
- 批准号:
13470192 - 财政年份:2001
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)