AF: MEDIUM: Collaborative Research: Foundations of Adaptive Data Analysis

AF:中:协作研究:自适应数据分析的基础

基本信息

  • 批准号:
    1763191
  • 负责人:
  • 金额:
    $ 27.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

Classical tools for rigorously analyzing data make the assumption that the analysis is static: the models and the hypotheses to be tested are fixed independently of the data, and preliminary analysis of the data does not feed back into the data gathering procedure. On the other hand, modern data analysis is highly adaptive. Large parts of modern machine learning perform model selection as a function of the data by iteratively tuning hyper-parameters, and exploratory data analysis is conducted to suggest hypotheses, which are then validated on the same data sets used to discover them. This kind of adaptivity is often referred to as p-hacking, and blamed in part for the surprising prevalence of non-reproducible science in some empirical fields. This project aims to develop rigorous tools and methodologies to perform statistically valid data analysis in the adaptive setting, drawing on techniques from statistics, information theory, differential privacy, and stable algorithm design. The technical goals of this project include coming up with: 1) information-theoretic measures that characterize the degree to which a worst-case data analysis can over-fit, given an interaction with a dataset; 2) models for data analysts that move beyond the worst-case setting, and; 3) empirical investigations that bridge the gap between theory and practice. The problem of adaptive data analysis (also called post-selection inference, or selective inference) has attracted attention in both computer science and statistics over the past several years, but from relatively disjoint communities. Part of the aim of this project is to integrate these two lines of work. The team of researchers on this project span departments of computer science, statistics, and biomedical data science. In addition to attempting to unify these two areas, the broader impacts of this research will be to make science more reliable, and reduce the prevalence of "over-fitting" and "false discovery." The project also has a significant outreach and education component, and will educate graduate students, organize workshops, and produce expository materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于严格分析数据的经典工具假设分析是静态的:要测试的模型和假设独立于数据而固定,并且数据的初步分析不会反馈到数据收集过程中。另一方面,现代数据分析具有高度适应性。现代机器学习的大部分通过迭代调整超参数来根据数据执行模型选择,并进行探索性数据分析以提出假设,然后在用于发现它们的相同数据集上进行验证。这种适应性通常被称为 p-hacking,并在一定程度上归咎于不可重复科学在某些经验领域的惊人盛行。该项目旨在开发严格的工具和方法,利用统计学、信息论、差分隐私和稳定算法设计的技术,在自适应环境中执行统计上有效的数据分析。该项目的技术目标包括提出:1)信息论测量,描述在与数据集交互的情况下最坏情况数据分析可能过度拟合的程度; 2)超越最坏情况设置的数据分析师模型; 3)弥合理论与实践之间差距的实证研究。自适应数据分析问题(也称为后选择推理或选择性推理)在过去几年中引起了计算机科学和统计学的关注,但来自相对脱节的社区。该项目的部分目标是将这两条工作线整合起来。该项目的研究人员团队横跨计算机科学、统计学和生物医学数据科学等部门。除了试图统一这两个领域之外,这项研究更广泛的影响将是使科学更加可靠,并减少“过度拟合”和“错误发现”的流行。该项目还具有重要的外展和教育部分,并将教育研究生、组织研讨会并制作说明材料。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AdaFDR: a Fast, Powerful and Covariate-Adaptive Approach for Multiple Hypothesis Testing.
AdaFDR:一种快速、强大且协变量自适应的多重假设检验方法。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zhang, Martin;Xia, Fei;Zou, James
  • 通讯作者:
    Zou, James
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Zou其他文献

Dynamical Systems Model of RNA Velocity Improves Inference of Single-cell Trajectory, Pseudo-time and Gene Regulation.
RNA 速度的动态系统模型改进了单细胞轨迹、伪时间和基因调控的推断。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Ruishan Liu;A. Pisco;Emelie Braun;S. Linnarsson;James Zou
  • 通讯作者:
    James Zou
Algorithms and Models for Genome Biology
基因组生物学的算法和模型
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Zou
  • 通讯作者:
    James Zou
Data Acquisition: A New Frontier in Data-centric AI
数据采集​​:以数据为中心的人工智能的新领域
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingjiao Chen;Bilge Acun;Newsha Ardalani;Yifan Sun;Feiyang Kang;Hanrui Lyu;Yongchan Kwon;Ruoxi Jia;Carole;Matei Zaharia;James Zou
  • 通讯作者:
    James Zou
Spatial Registration Evaluation of [18F]-MK6240 PET
[18F]-MK6240 PET 的空间配准评估
  • DOI:
    10.7916/d8-bf13-cy63
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Zou;Aubrey Johnson;Jeanelle France;S. Bharadwaj;Zeljko Tomljanovic;Y. Stern;A. Brickman;D. Devanand;J. Luchsinger;W. Kreisl;F. Provenzano
  • 通讯作者:
    F. Provenzano
Olfactory impairment is related to tau pathology and neuroinflammation in Alzheimer's disease
嗅觉障碍与阿尔茨海默病中的 tau 蛋白病理学和神经炎症有关
  • DOI:
    10.1101/2020.08.31.20183558
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julia Klein;Xinyu Yan;Aubrey Johnson;Zeljko Tomljanovic;James Zou;Krista Polly;L. Honig;A. Brickman;Y. Stern;D. Devanand;Seonjoo Lee;W. Kreisl
  • 通讯作者:
    W. Kreisl

James Zou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Zou', 18)}}的其他基金

CAREER: Enabling data valuation and deletion in human-centered machine learning
职业:在以人为本的机器学习中实现数据评估和删除
  • 批准号:
    1942926
  • 财政年份:
    2020
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
CRII: III: Robust Machine Learning Methods for Messy Data
CRII:III:针对杂乱数据的鲁棒机器学习方法
  • 批准号:
    1657155
  • 财政年份:
    2017
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了