Estimation of Critical Battery States via Strain and Stress Measurement
通过应变和应力测量估计关键电池状态
基本信息
- 批准号:1762247
- 负责人:
- 金额:$ 33.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy storage utilizing lithium-ion batteries is ubiquitous from cell phones and satellites to vehicles and the electric grid. All these applications require reliable estimates of the available power and energy. Consumer concerns, such as range anxiety for Electric Vehicles (EVs), hamper market penetration. Such concerns can be alleviated by improving estimates of critical battery states such as capacity and internal resistance that change over time. This research seeks to address those concerns by improving battery health diagnostics. This advance will benefit all battery-powered devices and could be especially crucial for the second-life use of automotive batteries for energy storage on the electric grid which has the potential to enable more substantial penetration of renewable resources through expanded utilization of existing battery technology. Experimentally validated models of the battery mechanical response and its connection to battery health would fill a critical gap in the availability of public-domain data and models. The state of the art battery estimation methods relies on the cell terminal voltage measurements, and the plan is to improve the battery health diagnostics in this project by measuring and interpreting the battery cell expansion which happens when the electrode layers fill and empty with lithium-ions during charging and discharging. This research aims to create a multi-physics model and estimation techniques to harness the information in the deformation of the electrodes and to analyze the measured electrical and mechanical signals to enhance battery health estimation. The graphite electrode exhibits distinct expansion patterns as it fills with lithium-ions, which can enable diagnosis of electrode-specific degradation. Several fundamental gaps in the modeling of multi-scale inter-dependent thermal, electrochemical and mechanical responses of the battery need to be addressed before the benefits of this approach can be realized in relevant usage cycles involving dynamic charging and discharging. Moreover, the accuracy of joint state and parameter estimation depends on the operating region and the current excitation or usage profile. Systematic techniques to assess the identifiability would benefit from physics-based models that can be used to investigate the influence of various degradation mechanisms, cross-sensitivity with thermal swelling, sensor location, and commercially relevant packaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用锂离子电池的能源存储从手机和卫星到车辆和电网都无处不在。所有这些应用都需要对可用功率和能源的可靠估计。消费者的担忧,例如电动汽车(电动汽车)的范围焦虑,阻碍市场渗透。通过改善关键电池状态的估计(例如能力和内部阻力)随着时间的推移而变化,可以通过改善估计值来缓解此类担忧。这项研究旨在通过改善电池健康诊断来解决这些问题。 这项进步将使所有电池供电的设备受益,对于第二寿命使用汽车电池在电网上存储的储能尤其至关重要,这有可能通过扩大现有电池技术的扩大利用来实现可再生资源的实质性渗透。电池机械响应的实验验证模型及其与电池健康的连接将填补公共域数据和模型的可用性。最先进的电池估计方法的状态取决于电池端子电压测量值,该计划是通过测量和解释电池电池的扩展来改善该项目中的电池健康诊断,这在电极层在充电和放电过程中用锂离子空的液体填充并空。 这项研究旨在创建多物理模型和估计技术,以利用电极变形中的信息,并分析测得的电气和机械信号以增强电池健康估计。石墨电极在充满锂离子时表现出不同的膨胀模式,这可以诊断出电极特异性降解。需要解决该方法的益处之前,需要解决电池的多尺度相互依赖的热,电化学和机械响应的建模中的几个基本差距,才能在涉及动态充电和放电的相关用法周期中实现这种方法的好处。此外,关节状态和参数估计的准确性取决于工作区域以及当前的激发或使用概况。评估可识别性的系统技术将从基于物理的模型中受益,这些模型可用于研究各种降解机制的影响,跨敏感性,具有热肿胀,传感器位置和商业上相关的包装。这项奖项反映了NSF的法规任务,并认为通过基金会的知识优点和广泛的crietia criteria criteria criteria criteria criteria criteria criteria criteria criteria criteria criteria cripitia cripitia recectia cristia cripitia cristeria均值得一评论。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Algorithmic Safety VEST For Li-ion Batteries During Fast Charging
- DOI:10.1016/j.ifacol.2021.11.225
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Peyman Mohtat;Sravan Pannala;V. Sulzer;Jason B. Siegel;A. Stefanopoulou
- 通讯作者:Peyman Mohtat;Sravan Pannala;V. Sulzer;Jason B. Siegel;A. Stefanopoulou
Modeling Li-Ion Battery Temperature and Expansion Force during the Early Stages of Thermal Runaway Triggered by Internal Shorts
- DOI:10.1149/2.1561910jes
- 发表时间:2019-07-08
- 期刊:
- 影响因子:3.9
- 作者:Cai, Ting;Stefanopoulou, Anna G.;Siegel, Jason B.
- 通讯作者:Siegel, Jason B.
Battery Internal Short Detection Methodology Using Cell Swelling Measurements
- DOI:10.23919/acc45564.2020.9147956
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:T. Cai;Sravan Pannala;A. Stefanopoulou;Jason B. Siegel
- 通讯作者:T. Cai;Sravan Pannala;A. Stefanopoulou;Jason B. Siegel
Reversible and Irreversible Expansion of Lithium-Ion Batteries Under a Wide Range of Stress Factors
锂离子电池在各种应力因素下的可逆和不可逆膨胀
- DOI:10.1149/1945-7111/ac2d3e
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Mohtat, Peyman;Lee, Suhak;Siegel, Jason B.;Stefanopoulou, Anna G.
- 通讯作者:Stefanopoulou, Anna G.
Towards better estimability of electrode-specific state of health: Decoding the cell expansion
- DOI:10.1016/j.jpowsour.2019.03.104
- 发表时间:2019-07
- 期刊:
- 影响因子:9.2
- 作者:Peyman Mohtat;Suhak Lee;Jason B. Siegel;A. Stefanopoulou
- 通讯作者:Peyman Mohtat;Suhak Lee;Jason B. Siegel;A. Stefanopoulou
共 13 条
- 1
- 2
- 3
Jason Siegel其他文献
Functionalized Porous Silicon in a Simulated Gastrointestinal Tract: Modeling the Biocompatibility of a Monolayer Protected Nanostructured Material
模拟胃肠道中的功能化多孔硅:模拟单层保护纳米结构材料的生物相容性
- DOI:
- 发表时间:20072007
- 期刊:
- 影响因子:0
- 作者:Daniel S. Albrecht;Jacob T. Lee;Nick Molby;Steven D. Rhodes;Hieu Minh Dam;Jason Siegel;Lon A. PorterDaniel S. Albrecht;Jacob T. Lee;Nick Molby;Steven D. Rhodes;Hieu Minh Dam;Jason Siegel;Lon A. Porter
- 通讯作者:Lon A. PorterLon A. Porter
Extra throughput versus days lost in V2G services: Influence of dominant degradation mechanism
- DOI:10.1016/j.est.2024.11424210.1016/j.est.2024.114242
- 发表时间:2024-12-202024-12-20
- 期刊:
- 影响因子:
- 作者:Hamidreza Movahedi;Sravan Pannala;Jason Siegel;Stephen J. Harris;David Howey;Anna StefanopoulouHamidreza Movahedi;Sravan Pannala;Jason Siegel;Stephen J. Harris;David Howey;Anna Stefanopoulou
- 通讯作者:Anna StefanopoulouAnna Stefanopoulou
Internal short circuit detection method for battery pack based on circuit topology
基于电路拓扑的电池组内部短路检测方法
- DOI:10.1007/s11431-017-9299-310.1007/s11431-017-9299-3
- 发表时间:2018-092018-09
- 期刊:
- 影响因子:0
- 作者:Mingxuan Zhang;Jiuyu Du;Lishuo Liu;Jason Siegel;Languang Lu;Xiangming He;Minggao OuyangMingxuan Zhang;Jiuyu Du;Lishuo Liu;Jason Siegel;Languang Lu;Xiangming He;Minggao Ouyang
- 通讯作者:Minggao OuyangMinggao Ouyang
Alkyl-functionalization of porous silicon via multimode microwave-assisted hydrosilylation
通过多模式微波辅助氢化硅烷化对多孔硅进行烷基官能化
- DOI:
- 发表时间:20162016
- 期刊:
- 影响因子:0
- 作者:J. C. Small;Hieu Minh Dam;Jason Siegel;Anton J. Crepinsek;Taylor A. Neal;Austin A. Althoff;Nathan Line;Lon A. PorterJ. C. Small;Hieu Minh Dam;Jason Siegel;Anton J. Crepinsek;Taylor A. Neal;Austin A. Althoff;Nathan Line;Lon A. Porter
- 通讯作者:Lon A. PorterLon A. Porter
共 4 条
- 1
相似国自然基金
高等教育如何影响大学生批判性思维能力发展——基于全国本科院校调查与测评的实证研究
- 批准号:72174081
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
本科生批判性思维课程有效性及其实现机制:基于准自然实验的追踪研究
- 批准号:71904054
- 批准年份:2019
- 资助金额:19.5 万元
- 项目类别:青年科学基金项目
基于“空间批判”视角的住宅现代生产研究:以20世纪长江三角洲地区为例
- 批准号:51708101
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
批判性思维对中国人创新观念与行为的影响
- 批准号:31671159
- 批准年份:2016
- 资助金额:61.0 万元
- 项目类别:面上项目
堆垒基与Narkiewicz常数的研究
- 批准号:11226279
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
- 批准号:1059527010595270
- 财政年份:2023
- 资助金额:$ 33.77万$ 33.77万
- 项目类别:
Implantable Transducer Systems for Auditory Prostheses
用于听觉假体的植入式换能器系统
- 批准号:1082573810825738
- 财政年份:2023
- 资助金额:$ 33.77万$ 33.77万
- 项目类别:
SBIR Phase I: Separations of Critical Materials in Lithium-ion Battery Black Mass
SBIR 第一阶段:锂离子电池黑料中关键材料的分离
- 批准号:22248402224840
- 财政年份:2023
- 资助金额:$ 33.77万$ 33.77万
- 项目类别:Standard GrantStandard Grant
Establishing feasibility of a novel industrial plant to recover critical metals from end-of-life EV batteries for re-entry into a circular battery supply chain
建立新型工厂的可行性,从报废电动汽车电池中回收关键金属,以重新进入循环电池供应链
- 批准号:1003140610031406
- 财政年份:2022
- 资助金额:$ 33.77万$ 33.77万
- 项目类别:BEIS-Funded ProgrammesBEIS-Funded Programmes
EALIR - Development of new, highly-efficient techniques to increase the recovery of critical materials in lithium-ion battery recycling
EALIR - 开发新的高效技术以提高锂离子电池回收中关键材料的回收率
- 批准号:1003485710034857
- 财政年份:2022
- 资助金额:$ 33.77万$ 33.77万
- 项目类别:Collaborative R&DCollaborative R&D