Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging

合作研究:ABI 创新:从 3D 成像恢复根结构的算法

基本信息

  • 批准号:
    1759836
  • 负责人:
  • 金额:
    $ 26.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Roots, the "hidden" half of the plant, play many critical roles in the plant's development such as the uptake of water and nutrients, providing anchorage, and stabilizing the soil. These functions, in turn, are closely associated with the root architecture. Quantifying root architecture is not only a fundamental aspect of plant science but is a critical component in crop breeding for sustainable agriculture. Recent advances in 3D imaging (e.g., CT and MRI) have made it possible to capture 3D root structures in natural growing environments and monitor their growth over time. Unfortunately, the potential of the imaging techniques has been largely held back by the lack of effective computational tools for interpreting the images and distilling biological insights. This project, to be conducted by a group of computer scientists, mathematicians, and biologists across three institutes in the St. Louis region, aims at developing efficient and robust computational methods for automated analysis of root architecture from 3D images. The research looks a step ahead of the current cutting edge phenotype data collection, to how we will derive accurate representations of growing root systems, and therefore gain insight into the plant phenome. The team is committed to providing training to more than ten students over the course of the project, leveraging the existing NSF REU programs at two of the institutes. The team will pursue outreach activities not only within the research communities but also locally in the St. Louis area with a focus on grade schools.Deriving root architecture from 3D images involves a number of technically challenging tasks, including inferring individual roots from a segmented image, reconstructing their branching structure, and tracking the architecture in a time series of segmented images. This research draws from, and extends upon, methods from computer graphics and computational geometry to address these tasks. Specifically, the research will develop three novel classes of methods. Given a noise-ridden root segmentation, the first class of methods produces a curve skeleton that captures the topology and branching structure of the root system. The second class then uses the curve skeleton to automatically infer architectural components such as the root hierarchy and types. The third class improves the accuracy of the algorithms in the 1rst two classes by utilizing a sequence of segmentations and further annotates the root architecture with a time function. These algorithms enable the extraction of detailed root traits for root phenotyping, and both the algorithms and traits will be evaluated by a suite of representative real-world imaging data.Besides the design of automatic algorithms, a graphical software will be prototyped that offers fast and interactive means to inspect and edit the results produced by the algorithms. The software will be tested by biologists in the team and freely distributed to the research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
根是植物“隐藏”的一半,在植物的发育中发挥着许多关键作用,例如吸收水分和养分、提供锚定和稳定土壤。这些功能又与根架构密切相关。量化根结构不仅是植物科学的一个基本方面,也是可持续农业作物育种的关键组成部分。 3D 成像(例如 CT 和 MRI)的最新进展使得捕获自然生长环境中的 3D 根结构并监测其随时间的生长成为可能。不幸的是,由于缺乏有效的计算工具来解释图像和提炼生物学见解,成像技术的潜力在很大程度上受到限制。该项目由圣路易斯地区三个研究所的一组计算机科学家、数学家和生物学家进行,旨在开发高效且强大的计算方法,用于从 3D 图像自动分析根结构。这项研究在我们如何获得生长根系的准确表示,从而深入了解植物表型方面,比当前最前沿的表型数据收集领先了一步。该团队致力于利用其中两个研究所现有的 NSF REU 项目,在项目过程中为十多名学生提供培训。该团队不仅将在研究社区内开展推广活动,还将在圣路易斯地区开展推广活动,重点是小学。从 3D 图像导出根结构涉及许多技术上具有挑战性的任务,包括从分段图像推断单个根,重建它们的分支结构,并在分段图像的时间序列中跟踪架构。这项研究借鉴并扩展了计算机图形学和计算几何的方法来解决这些任务。具体来说,该研究将开发三类新颖的方法。给定充满噪声的根分割,第一类方法产生一个曲线骨架,捕获根系统的拓扑和分支结构。然后,第二个类使用曲线骨架自动推断架构组件,例如根层次结构和类型。第三类通过利用一系列分段来提高前两类算法的准确性,并进一步用时间函数注释根架构。这些算法能够提取详细的根性状以进行根表型分析,并且算法和性状都将通过一套具有代表性的真实世界成像数据进行评估。除了自动算法的设计之外,还将制作一个图形软件原型,该软件可以提供快速、准确的分析结果。交互式方式检查和编辑算法产生的结果。该软件将由团队中的生物学家进行测试,并免费分发给研究界。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust optimization for topological surface reconstruction
  • DOI:
    10.1145/3197517.3201348
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Lazar;Nadav Dym;Y. Kushinsky;Zhiyang Huang;T. Ju;Y. Lipman
  • 通讯作者:
    R. Lazar;Nadav Dym;Y. Kushinsky;Zhiyang Huang;T. Ju;Y. Lipman
Comprehensive 3D phenotyping reveals continuous morphological variation across genetically diverse sorghum inflorescences
  • DOI:
    10.1111/nph.16533
  • 发表时间:
    2020-04-16
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Li, Mao;Shao, Mon-Ray;Topp, Christopher N.
  • 通讯作者:
    Topp, Christopher N.
Characterizing 3D inflorescence architecture in grapevine using X-ray imaging and advanced morphometrics: implications for understanding cluster density
  • DOI:
    10.1093/jxb/erz394
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Mao Li;Laura L. Klein;K. Duncan;N. Jiang;D. Chitwood;J. Londo;Allison J. Miller;C. Topp
  • 通讯作者:
    Mao Li;Laura L. Klein;K. Duncan;N. Jiang;D. Chitwood;J. Londo;Allison J. Miller;C. Topp
Topological Simplification of Nested Shapes
  • DOI:
    10.1111/cgf.14611
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Dan Zeng;E. Chambers;D. Letscher;T. Ju
  • 通讯作者:
    Dan Zeng;E. Chambers;D. Letscher;T. Ju
Some Heuristics for the Homological Simplification Problem
同调简化问题的一些启发式方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Ju其他文献

New Study on Determining the Weight of Index in Synthetic Weighted Mark Method
Path planning for 3D transportation of biological cells with optical tweezers
利用光镊进行生物细胞3D运输的路径规划
Assessment of Quad-Frequency Long-Baseline Positioning with BeiDou-3 and Galileo Observations
利用北斗三号和伽利略观测评估四频长基线定位
  • DOI:
    10.3390/rs13081551
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Liu Liwei;Pan Shuguo;Gao Wang;Ma Chun;Tao Ju;Zhao Qing
  • 通讯作者:
    Zhao Qing
Elimination of Silcon Droplets Formation during 4H-SiC Epitaxial Growth by Chloride-Based CVD in a Vertical Hot-Wall Reactor
在立式热壁反应器中通过氯化物 CVD 消除 4H-SiC 外延生长过程中硅液滴的形成
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuangang Li;Tao Ju;Liguo Zhang;Xiang Kan;Xuan Zhang;Juan Qin;Baoshun Zhang;Zehong Zhang
  • 通讯作者:
    Zehong Zhang
A multi-UAV assisted task offloading and path optimization for mobile edge computing via muti-agent deep reinforcement learning
通过多智能体深度强化学习的多无人机辅助移动边缘计算任务卸载和路径优化

Tao Ju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Ju', 18)}}的其他基金

URoL: Epigenetics 2- Collaborative Research: Revealing how epigenetic inheritance governs the environmental challenge response with transformative 3D genomics and machine learning
URoL:表观遗传学 2- 协作研究:揭示表观遗传如何通过变革性 3D 基因组学和机器学习控制环境挑战响应
  • 批准号:
    1921728
  • 财政年份:
    2019
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
RI: Small: Functional Object Modeling
RI:小型:功能对象建模
  • 批准号:
    1618685
  • 财政年份:
    2016
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Algorithms and tools for modeling macromolecular assemblies
合作研究:ABI Innovation:用于模拟大分子组装体的算法和工具
  • 批准号:
    1356388
  • 财政年份:
    2014
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: Developing conceptual models for navigation, marking, and inspection in the context of 3D image segmentation
CGV:媒介:协作研究:开发 3D 图像分割背景下的导航、标记和检查概念模型
  • 批准号:
    1302200
  • 财政年份:
    2013
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
CGV: Small: Collaborative Research: Theories, algorithms, and applications of medial forms for shape analysis
CGV:小型:协作研究:形状分析的中间形式的理论、算法和应用
  • 批准号:
    1319573
  • 财政年份:
    2013
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
CAREER: Reconstructing Geometrically and Topologically Correct Models
职业:重建几何和拓扑正确的模型
  • 批准号:
    0846072
  • 财政年份:
    2009
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
Building Geometric Databases for Anatomy-Based Spatial Queries
为基于解剖学的空间查询构建几何数据库
  • 批准号:
    0743691
  • 财政年份:
    2008
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
  • 批准号:
    0705538
  • 财政年份:
    2007
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
Geometric Modeling for Spatial Analysis of Bio-Medical Data
生物医学数据空间分析的几何建模
  • 批准号:
    0702662
  • 财政年份:
    2007
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant

相似国自然基金

蛋白磷酸酶PP2C34和PP2C75去磷酸化ABI1激活ABA信号途径的作用机理研究
  • 批准号:
    32370331
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
耐干苔藓脱落酸信号关键因子ABI3调控机理研究
  • 批准号:
    31900270
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
SRRM4介导Abi1可变剪接调控平滑肌细胞表型转化在动脉粥样硬化中的关键作用和机制研究
  • 批准号:
    81800415
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
ABI3对阿尔茨海默病小胶质细胞吞噬功能调控及机制研究
  • 批准号:
    81801266
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
拟南芥转录因子ABI5和MYB30共调控ABA受体PYL12参与种子萌发的机制研究
  • 批准号:
    31872656
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了