Collaborative Research: ABI Innovation: Algorithms and tools for modeling macromolecular assemblies

合作研究:ABI Innovation:用于模拟大分子组装体的算法和工具

基本信息

  • 批准号:
    1356388
  • 负责人:
  • 金额:
    $ 23.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

This research seeks to develop novel methods and software tools for mining structures of large molecular assemblies from imaging data. Macromolecular assemblies, such as ribosomes and viruses, are responsible for driving nearly all cellular events. How these assemblies function, in turn, is closely related with their 3Dstructures, which are analogous to interlocking puzzles consisting of tens to hundreds of proteins, each having its own unique shape. The ability to model the structure of individual proteins as well as their architecture in an assembly is therefore critically important for understanding how the cell, and more broadly the biological system, function. While state-of-art imaging methods have been developed to capture macromolecular assemblies as 3D density volumes, such as X-ray crystallography and electron cryo-microscopy, creating structural models from such imagery remains a time-consuming and highly manual process in part due to the limited resolution of the data. The goal of the project is to streamline the image-to-structure pipeline by designing novel computational algorithms and developing a comprehensive modeling platform. The algorithms seek to leverage the advance in computer graphics and vision while combining image data, sequence data, and expert knowledge to improve the efficiency and accuracy of common modeling tasks. The modeling platform will integrate the investigator's methods with third-party modeling packages to provide an easy-to-use one-stop-shop for creating and validating structures of macromolecular assemblies all the way from raw images and individual protein sequences. The platform will be built upon the existing Gorgon software (http://gorgon.wustl.edu) and distributed together with the popular EMAN2 software for image analysis of density maps. The outcome of the project will have a direct impact on reducing the time and effort that biologists spend on translating experimental results to knowledge, discoveries, and treatments.More specifically, the project will focus on algorithmic development on three modeling tasks that currently either rely on manual labor or are computationally expensive. These problems include detecting secondary structure elements (e.g., alpha-helices and beta-sheets) at various non-atomic resolutions, tracing protein backbones in the density volume, and flexibly fitting probe structures into the volume. The algorithms will build upon successful techniques from computer graphics and vision, including mesh deformation using differential coordinates and spectral feature matching. To transform Gorgon into a modeling "hub", the software architecture and interface of Gorgon will be redesigned in this project to improve inter-operability, scalability, and usability. Plug-ins will also be developed for third-party tools that provide complementary modeling capability such as comparative modeling and protein folding.
这项研究旨在开发新的方法和软件工具,用于从成像数据中挖掘大分子组装体的结构。大分子组装体,例如核糖体和病毒,负责驱动几乎所有的细胞事件。反过来,这些组件的功能与其 3D 结构密切相关,这类似于由数十到数百个蛋白质组成的连锁拼图,每个蛋白质都有自己独特的形状。因此,对单个蛋白质的结构及其在组装中的结构进行建模的能力对于理解细胞以及更广泛的生物系统如何发挥作用至关重要。虽然已经开发出最先进的成像方法来捕获大分子组装体作为 3D 密度体积,例如 X 射线晶体学和电子冷冻显微镜,但从此类图像创建结构模型仍然是一个耗时且高度手动的过程,部分原因是数据分辨率有限。该项目的目标是通过设计新颖的计算算法和开发综合建模平台来简化图像到结构的流程。这些算法寻求利用计算机图形和视觉的进步,同时结合图像数据、序列数据和专家知识,以提高常见建模任务的效率和准确性。该建模平台将研究者的方法与第三方建模包相结合,提供易于使用的一站式服务,用于从原始图像和单个蛋白质序列创建和验证大分子组装体的结构。该平台将建立在现有的 Gorgon 软件 (http://gorgon.wustl.edu) 之上,并与流行的 EMAN2 软件一起分发,用于密度图的图像分析。该项目的成果将对减少生物学家将实验结果转化为知识、发现和治疗所花费的时间和精力产生直接影响。更具体地说,该项目将重点关注目前依赖于的三个建模任务的算法开发体力劳动或计算成本高昂。这些问题包括以各种非原子分辨率检测二级结构元素(例如,α-螺旋和β-折叠)、追踪密度体积中的蛋白质主链以及将探针结构灵活地安装到体积中。这些算法将建立在计算机图形和视觉的成功技术之上,包括使用微分坐标和光谱特征匹配的网格变形。为了将 Gorgon 转变为建模“中心”,该项目将重新设计 Gorgon 的软件架构和界面,以提高互操作性、可扩展性和可用性。还将为第三方工具开发插件,提供补充建模功能,例如比较建模和蛋白质折叠。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Ju其他文献

New Study on Determining the Weight of Index in Synthetic Weighted Mark Method
Path planning for 3D transportation of biological cells with optical tweezers
利用光镊进行生物细胞3D运输的路径规划
Assessment of Quad-Frequency Long-Baseline Positioning with BeiDou-3 and Galileo Observations
利用北斗三号和伽利略观测评估四频长基线定位
  • DOI:
    10.3390/rs13081551
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Liu Liwei;Pan Shuguo;Gao Wang;Ma Chun;Tao Ju;Zhao Qing
  • 通讯作者:
    Zhao Qing
Elimination of Silcon Droplets Formation during 4H-SiC Epitaxial Growth by Chloride-Based CVD in a Vertical Hot-Wall Reactor
在立式热壁反应器中通过氯化物 CVD 消除 4H-SiC 外延生长过程中硅液滴的形成
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuangang Li;Tao Ju;Liguo Zhang;Xiang Kan;Xuan Zhang;Juan Qin;Baoshun Zhang;Zehong Zhang
  • 通讯作者:
    Zehong Zhang
A multi-UAV assisted task offloading and path optimization for mobile edge computing via muti-agent deep reinforcement learning
通过多智能体深度强化学习的多无人机辅助移动边缘计算任务卸载和路径优化

Tao Ju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Ju', 18)}}的其他基金

URoL: Epigenetics 2- Collaborative Research: Revealing how epigenetic inheritance governs the environmental challenge response with transformative 3D genomics and machine learning
URoL:表观遗传学 2- 协作研究:揭示表观遗传如何通过变革性 3D 基因组学和机器学习控制环境挑战响应
  • 批准号:
    1921728
  • 财政年份:
    2019
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
RI: Small: Functional Object Modeling
RI:小型:功能对象建模
  • 批准号:
    1618685
  • 财政年份:
    2016
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Continuing Grant
CGV: Medium: Collaborative Research: Developing conceptual models for navigation, marking, and inspection in the context of 3D image segmentation
CGV:媒介:协作研究:开发 3D 图像分割背景下的导航、标记和检查概念模型
  • 批准号:
    1302200
  • 财政年份:
    2013
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
CGV: Small: Collaborative Research: Theories, algorithms, and applications of medial forms for shape analysis
CGV:小型:协作研究:形状分析的中间形式的理论、算法和应用
  • 批准号:
    1319573
  • 财政年份:
    2013
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
CAREER: Reconstructing Geometrically and Topologically Correct Models
职业:重建几何和拓扑正确的模型
  • 批准号:
    0846072
  • 财政年份:
    2009
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Continuing Grant
Building Geometric Databases for Anatomy-Based Spatial Queries
为基于解剖学的空间查询构建几何数据库
  • 批准号:
    0743691
  • 财政年份:
    2008
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
  • 批准号:
    0705538
  • 财政年份:
    2007
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
Geometric Modeling for Spatial Analysis of Bio-Medical Data
生物医学数据空间分析的几何建模
  • 批准号:
    0702662
  • 财政年份:
    2007
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

蛋白磷酸酶PP2C34和PP2C75去磷酸化ABI1激活ABA信号途径的作用机理研究
  • 批准号:
    32370331
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
耐干苔藓脱落酸信号关键因子ABI3调控机理研究
  • 批准号:
    31900270
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
SRRM4介导Abi1可变剪接调控平滑肌细胞表型转化在动脉粥样硬化中的关键作用和机制研究
  • 批准号:
    81800415
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
ABI3对阿尔茨海默病小胶质细胞吞噬功能调控及机制研究
  • 批准号:
    81801266
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
拟南芥转录因子ABI5和MYB30共调控ABA受体PYL12参与种子萌发的机制研究
  • 批准号:
    31872656
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了