BIGDATA: IA: Collaborative Research: From Bytes to Watts - A Data Science Solution to Improve Wind Energy Reliability and Operation
BIGDATA:IA:协作研究:从字节到瓦特 - 提高风能可靠性和运行的数据科学解决方案
基本信息
- 批准号:1741166
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The collective efforts in aerospace, civil, electrical, and mechanical engineering areas have led to remarkable progresses in wind energy. Larger turbines are designed and installed, and wind farms are nowadays built at locations where wind is even more intermittent and maintenance equipment is less accessible. This adds new challenges to ensuring operational reliability. To cope with these challenges, along with the rapid advancement in microelectronics, modern wind farms are equipped with a large number and variety of sensors, including, at the turbine level, anemometers, tachometers, accelerometers, thermometers, strain sensors, and power meters, and at the farm level, anemometers, vanes, sonars, thermometers, humidity meters, pressure meters, among others. It is worth noting that all these data are currently analyzed/utilized only in their respective domains. The big data challenges in this project include how to best use spatio-temporal data for wind forecast, how to use data of different nature (wind, power, load etc.) and data of different sources (physical data versus computer simulation data) for power production assessment in a computationally efficient manner, and finally how to integrate these three sets of solutions into a reliable and efficient computational platform. The proposed research and education activities will make a paradigm shift in the wind industry by demonstrating how dramatically data science innovations can benefit the industry. The PIs will disseminate the research findings through classroom teaching, journal/conference publications, industry workshops, and data/software sharing. The summer internship opportunities and undergraduate research help train the next generation workforce to be better versed with data science methodologies.The critical barrier to cost effective wind power and its general adoption is partly rooted in wind stochasticity, severely complicating wind power production optimization and cost reduction. The long-term viability of wind energy hinges upon a good understanding of its production reliability, which is affected in turn by the predictability of wind and power productivity of wind turbines. Furthermore, the productivity of a wind turbine comprises two aspects: its ability of converting wind into power during its operation and the availability of wind turbines. Three inter-related research efforts will enhance wind energy reliability and productivity): (1) spatio-temporal analysis (for wind forecast) (2) conditional density estimation (for wind-to-power conversion assessment); and (3) importance sampling (for turbine reliability assessment and improvement). Significant data resourced provided by industry partners in the research, coupled with models and computational resources, will enable better prediction of wind profiles and utilization. In addition, the team will develop dedicated reconfigurable field programmable gate array (FPGA) processors that will be 50 to 500 times faster than general-purpose CPUs for both on-site and central control processing and have small form-factor, low cost and energy efficient to enable agile development under severe outdoor conditions at wind farms.
航空航天、土木、电气和机械工程领域的集体努力导致风能取得了显着进展。如今,人们设计和安装了更大的涡轮机,而风电场则建在风力更加间歇性且维护设备更难到达的地方。这给确保运行可靠性带来了新的挑战。为了应对这些挑战,随着微电子技术的快速发展,现代风电场配备了大量且种类繁多的传感器,包括涡轮级的风速计、转速计、加速度计、温度计、应变传感器和功率计,在农场层面,有风速计、风向标、声纳、温度计、湿度计、压力计等。值得注意的是,所有这些数据目前仅在各自的领域进行分析/利用。该项目中的大数据挑战包括如何最好地利用时空数据进行风预报,如何利用不同性质的数据(风、电力、负荷等)和不同来源的数据(物理数据与计算机模拟数据)进行风预报。以计算高效的方式进行发电评估,最后如何将这三套解决方案集成到一个可靠且高效的计算平台中。拟议的研究和教育活动将通过展示数据科学创新如何使风能行业受益匪浅,从而实现风能行业的范式转变。 PI 将通过课堂教学、期刊/会议出版物、行业研讨会和数据/软件共享来传播研究成果。暑期实习机会和本科生研究有助于培训下一代劳动力,使其更好地掌握数据科学方法。风电成本效益及其普遍采用的关键障碍部分源于风的随机性,使风电生产优化和成本降低严重复杂化。风能的长期可行性取决于对其生产可靠性的充分了解,而生产可靠性又受到风能的可预测性和风力涡轮机发电效率的影响。此外,风力涡轮机的生产力包括两个方面:其在运行期间将风转化为电力的能力以及风力涡轮机的可用性。三项相互关联的研究工作将提高风能的可靠性和生产力):(1)时空分析(用于风预报)(2)条件密度估计(用于风电转换评估); (3) 重要性抽样(用于涡轮机可靠性评估和改进)。行业合作伙伴在研究中提供的重要数据资源,加上模型和计算资源,将能够更好地预测风廓线和利用。 此外,该团队还将开发专用的可重构现场可编程门阵列(FPGA)处理器,该处理器的速度比用于现场和中央控制处理的通用CPU快50至500倍,并且具有体积小、成本低和能耗低的特点。高效实现风电场恶劣室外条件下的敏捷开发。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Extreme Load Estimation in Wind Turbines
风力涡轮机的自适应极限负载估计
- DOI:10.2514/6.2017-0679
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Pan, Qiyun;Byon, Eunshin
- 通讯作者:Byon, Eunshin
Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models
使用随机黑盒计算机模型进行极端分位数估计的自适应重要性采样
- DOI:10.1002/nav.21938
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Pan, Qiyun;Byon, Eunshin;Ko, Young Myoung;Lam, Henry
- 通讯作者:Lam, Henry
Uncertainty Quantification for Extreme Quantile Estimation With Stochastic Computer Models
使用随机计算机模型进行极端分位数估计的不确定性量化
- DOI:10.1109/tr.2020.2980448
- 发表时间:2021-03
- 期刊:
- 影响因子:5.9
- 作者:Pan, Qiyun;Ko, Young Myoung;Byon, Eunshin
- 通讯作者:Byon, Eunshin
Optimal budget allocation for stochastic simulation with importance sampling: Exploration vs. replication
具有重要性采样的随机模拟的最佳预算分配:探索与复制
- DOI:10.1080/24725854.2021.1953197
- 发表时间:2022-09
- 期刊:
- 影响因子:2.6
- 作者:Myoung Ko, Young;Byon, Eunshin
- 通讯作者:Byon, Eunshin
Parameter calibration in wake effect simulation model with stochastic gradient descent and stratified sampling
随机梯度下降和分层采样尾流效应仿真模型参数校准
- DOI:10.1214/21-aoas1567
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Liu, Bingjie;Yue, Xubo;Byon, Eunshin;Kontar, Raed Al
- 通讯作者:Kontar, Raed Al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eunshin Byon其他文献
Eunshin Byon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eunshin Byon', 18)}}的其他基金
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
- 批准号:
2226348 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: A Framework for Assessing the Impact of Extreme Heat and Drought on Urban Energy Production and Consumption
合作研究:评估极端高温和干旱对城市能源生产和消费影响的框架
- 批准号:
1662553 - 财政年份:2017
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Collaborative Degradation Analysis for Enterprise-Level Maintenance Management via Dynamic Segmentation
协作研究:通过动态细分进行企业级维护管理的协作退化分析
- 批准号:
1536924 - 财政年份:2015
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Regularized Learning Enabled Monitoring and Control for Wind Power Systems
风电系统的常规学习监控和控制
- 批准号:
1362513 - 财政年份:2014
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似国自然基金
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大豆GmCPSF73-Ia调控侧根发育的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
核因子IA通过调节破骨细胞分化影响骨稳态和骨量的作用及其机制研究
- 批准号:82072389
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
- 批准号:
2034479 - 财政年份:2020
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838024 - 财政年份:2019
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant