CAREER: Development and Characterization of New High Thermal Conductivity Materials for Energy-Efficient Electronics and Photonics

职业:用于节能电子和光子学的新型高导热材料的开发和表征

基本信息

  • 批准号:
    1753393
  • 负责人:
  • 金额:
    $ 49.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Non-technical Description: With the ever-shrinking dimensions of electronic and photonic devices to the nanoscale, heat dissipation is an increasingly critical technological challenge. To address this challenge, discovering and understanding the properties of high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve the performance of devices constitute an urgent need. This CAREER project aims to investigate new high thermal conductivity materials and understand the fundamental transport phenomena and mechanisms associated with the chemistry and structures of such materials. The PI is using complementary approaches, including multiscale modeling, advanced synthesis and characterization methods. These less explored materials are theoretically predicted to offer new paradigms to enable advanced electronics, optoelectronics, thermal energy conversion and management. The research components of this project are closely integrated with various education and outreach activities, offering cross-disciplinary training beyond traditional educational boundaries, and involving the participation of underrepresented and diversity groups. This is accomplished through industry-academia collaborations, development of a new interdisciplinary course curriculum, and establishment of a Nano-Energy outreach program.Technical Description: The principal investigator and his research team are investigating a new class of high thermal conductivity materials (such as BAs, BP, GeC) to address the critical challenge of heat dissipation in modern electronics and photonics. Some of these unique materials have been predicted recently by ab initio theory to have ultrahigh thermal conductivity, over 1000 W/mK, enabled by multiple factors, including a large mass ratio of the constitutive atoms, acoustic bunching, and isotopic purity. This CAREER project aims to experimentally realize these high thermal conductivity materials through a synergistic growth-measurement-model approach to investigate the optimum growth conditions, structural and thermal properties, and phonon transport mechanisms. The team develops new characterization tools, including advanced phonon spectral mapping spectroscopy based on the time-domain thermoreflectance technique, and advanced atomic-level material structural control methods, to establish detailed structure-property relationships with microscale quantification. Experimental measurement results including phonon mean free path spectra are analyzed using atomistic density functional theory and multiscale Boltzmann transport equations solved by Monte Carlo simulations. Completion of this project may lead to transformative technological innovations for advancing the performance and energy-efficiency of future electronics and photonics. In addition, the multidisciplinary research components are closely integrated with various education and outreach activities with graduate, undergraduate, and high school students, involving students from underrepresented minority groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:随着电子和光子器件的尺寸不断缩小至纳米级,散热成为越来越关键的技术挑战。为了应对这一挑战,迫切需要发现和了解能够有效散热热点并提高设备性能的高导热材料的特性。该职业项目旨在研究新型高导热率材料,并了解与此类材料的化学和结构相关的基本传输现象和机制。 PI 正在使用补充方法,包括多尺度建模、高级综合和表征方法。从理论上讲,这些较少探索的材料预计将提供新的范例,以实现先进的电子学、光电子学、热能转换和管理。该项目的研究部分与各种教育和外展活动紧密结合,提供超越传统教育界限的跨学科培训,并让代表性不足和多元化群体参与其中。这是通过产学合作、开发新的跨学科课程以及建立纳米能源推广计划来实现的。技术描述:首席研究员和他的研究团队正在研究一类新型高导热材料(例如BA、BP、GeC)来解决现代电子和光子学中散热的关键挑战。最近,从头算理论预测其中一些独特材料具有超过 1000 W/mK 的超高导热率,这是由多种因素实现的,包括大的组成原子质量比、声束和同位素纯度。该职业项目旨在通过协同生长测量模型方法以实验方式实现这些高导热率材料,以研究最佳生长条件、结构和热性能以及声子传输机制。该团队开发了新的表征工具,包括基于时域热反射技术的先进声子光谱映射光谱和先进的原子级材料结构控制方法,以通过微尺度量化建立详细的结构-性能关系。使用原子密度泛函理论和蒙特卡罗模拟求解的多尺度玻尔兹曼输运方程对包括声子平均自由程谱在内的实验测量结果进行了分析。该项目的完成可能会带来变革性的技术创新,从而提高未来电子和光子学的性能和能源效率。此外,多学科研究部分与研究生、本科生和高中生的各种教育和推广活动紧密结合,其中包括来自代表性不足的少数群体的学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics
  • DOI:
    10.1007/s12274-020-2634-y
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    M. Ke;Huuduy Nguyen;H. Fan;Man Li;Huan Wu;Yongjie Hu
  • 通讯作者:
    M. Ke;Huuduy Nguyen;H. Fan;Man Li;Huan Wu;Yongjie Hu
Anomalous thermal transport under high pressure in boron arsenide
  • DOI:
    10.1038/s41586-022-05381-x
  • 发表时间:
    2022-11-23
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Li, Suixuan;Qin, Zihao;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
Integration of boron arsenide cooling substrates into gallium nitride devices
  • DOI:
    10.1038/s41928-021-00595-9
  • 发表时间:
    2021-06-17
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Kang, Joon Sang;Li, Man;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
Ab initio investigations on hydrodynamic phonon transport: From diffusion to convection
Basic physical properties of cubic boron arsenide
  • DOI:
    10.1063/1.5116025
  • 发表时间:
    2019-09-16
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Kang, Joon Sang;Li, Man;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongjie Hu其他文献

No energy transport without discord
没有不和谐就没有能量传输
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Lloyd;Zi;S. Pirandola;Vazrik Chiloyan;Yongjie Hu;S. Huberman;Gang Chen
  • 通讯作者:
    Gang Chen
Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China
川中下寒武统超深层龙王庙组储层多期白云石化作用及形成
  • DOI:
    10.1016/j.marpetgeo.2020.104752
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Dawei Liu;Chunfang Cai;Yongjie Hu;Yanyan Peng;Lei Jiang
  • 通讯作者:
    Lei Jiang
Nanotechnology for lower grade waste heat recovery
用于低品位废热回收的纳米技术
Upper Ediacaran fibrous dolomite versus Ordovician fibrous calcite cement: Origin and significance as a paleoenvironmental archive
上埃迪卡拉系纤维白云石与奥陶纪纤维方解石胶结物:起源和作为古环境档案的意义
  • DOI:
    10.1016/j.chemgeo.2022.121065
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yongjie Hu;Chunfang Cai;Ying Li;Rui Zhou;Fuchang Lu;Junfeng Hu;Chaobo Ren;Lianqi Jia;Yuanquan Zhou;Kevin Lippert;Adrian Immenhauser
  • 通讯作者:
    Adrian Immenhauser
Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements
上埃迪卡拉系纤维白云石胶结物的形成、成岩作用及古环境意义
  • DOI:
    10.1111/sed.12683
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yongjie Hu;Chunfang Cai;Dawei Liu;Chelsea L.Pederson;Lei Jiang;Anjiang Shen;Adrian Immenhauser
  • 通讯作者:
    Adrian Immenhauser

Yongjie Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongjie Hu', 18)}}的其他基金

Travel to attend 2019 Spring MRS Symposium on Emerging Thermal Materials - From Nanoscale to Multiscale Thermal Management, in Phoenix, Arizona, April 22-26, 2019.
前往参加 2019 年 4 月 22 日至 26 日在亚利桑那州凤凰城举行的 2019 年春季 MRS 新兴热材料研讨会 - 从纳米级到多尺度热管理。
  • 批准号:
    1929817
  • 财政年份:
    2019
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant

相似国自然基金

发展表征受限高分子薄膜协同动力学特征尺寸的方法
  • 批准号:
    22303084
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共享发展视角下主客乡村依恋的表征、动因及对旅游价值共创的影响
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量级感知影响数量表征的行为及脑机制:从人类个体发展的视角
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
类别学习发展及其机制的眼动研究
  • 批准号:
    31900769
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
学习与记忆终生发展的机制与干预
  • 批准号:
    31730038
  • 批准年份:
    2017
  • 资助金额:
    274.0 万元
  • 项目类别:
    重点项目

相似海外基金

Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
  • 批准号:
    10663613
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
  • 批准号:
    10663410
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Characterization of seasonal CoV immunity and operationalization of a novel controlled human infection model for the betacoronavirus OC43
β冠状病毒 OC43 的季节性 CoV 免疫特征和新型受控人类感染模型的操作
  • 批准号:
    10663727
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Functional Characterization of Tau Mutation and Post-translational Modifications
Tau 突变和翻译后修饰的功能表征
  • 批准号:
    10572436
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Characterization of Altered Immunity in Patients with Inflammatory Arthritis Induced by Immune Checkpoint Inhibitor Therapy
免疫检查点抑制剂治疗引起的炎症性关节炎患者免疫改变的特征
  • 批准号:
    10885381
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了