CAREER: Probing Oxygen-Mediated Electrochemical Processes of Oxides at High Spatial and Temporal Resolution
职业:以高时空分辨率探测氧介导的氧化物电化学过程
基本信息
- 批准号:1753383
- 负责人:
- 金额:$ 51.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Solid oxide fuel cells - devices that produces electricity directly from oxidizing a fuel - are considered routes for clean and efficient energy conversion. Since the performance of these devices is largely determined by the kinetics of the oxygen-based electrochemical reaction occurring at the air electrode, intense efforts have been made to improve the electrode performance and better understand it on a fundamental level. While each elementary process of the reaction is intrinsically a nanoscale phenomenon dictated by local material properties and geometry, the electrochemical properties have been mostly analyzed through bulk (volume-averaged) measurements. To obtain a breakthrough in electrode design, a more thorough understanding of the process at the nanoscale is needed. This project aims for new insights about the electrochemical reactions through in situ nanoscale observations, which is enabled by a novel scanning probe microscopy type instrument. This project is training undergraduate and graduate researchers (including underrepresented minority students) for their future employment in the energy technology sector. TECHNICAL DETAILS: The performance of solid oxide fuel cells and electrolyzers are largely affected by the kinetics of oxygen reduction/evolution reactions (ORR/OER). While intense efforts have been made to understand the underpinning mechanisms of the reactions, nanoscale processes during the reaction are largely unknown. This project aims to advance the understanding of ORR/OER processes through in situ nanoscale observations by leveraging a novel scanning probe-based setup with a microscale heater. There are three significant aspects of this research: 1) demonstrating a new high temperature scanning probe-based approach for in situ nanoscale characterizations of electrochemical surface reaction and charge transport kinetics under operating oxygen activities; 2) pioneering a novel time-resolved nanoscale characterization of thermally-activated processes; 3) providing deeper insight regarding the ORR/OER and related charge transport at the nanoscale. The project provides extensive research opportunities for graduate and undergraduate students, enhances curricula by incorporating research into seminars and courses, and promotes effective education for K-12 students from the local and surrounding rural communities in the Central Valley through the on-campus Engineering Service Learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:固体氧化物燃料电池——通过氧化燃料直接发电的装置——被认为是清洁高效的能源转换途径。由于这些装置的性能很大程度上取决于空气电极处发生的氧基电化学反应的动力学,因此人们付出了巨大的努力来提高电极性能并从根本上更好地理解它。虽然反应的每个基本过程本质上都是由局部材料特性和几何形状决定的纳米级现象,但电化学特性主要是通过批量(体积平均)测量来分析的。为了在电极设计上取得突破,需要对纳米尺度的过程有更透彻的了解。该项目旨在通过原位纳米级观察获得关于电化学反应的新见解,这是由新型扫描探针显微镜型仪器实现的。该项目正在培训本科生和研究生研究人员(包括代表性不足的少数族裔学生),以便他们未来在能源技术领域就业。技术细节:固体氧化物燃料电池和电解槽的性能在很大程度上受到氧还原/放出反应(ORR/OER)动力学的影响。尽管人们为了解反应的基础机制付出了巨大的努力,但反应过程中的纳米级过程在很大程度上还是未知的。该项目旨在通过利用带有微型加热器的新型扫描探针装置,通过原位纳米级观察来增进对 ORR/OER 过程的理解。这项研究有三个重要方面:1)展示了一种新的基于高温扫描探针的方法,用于在操作氧活动下电化学表面反应和电荷传输动力学的原位纳米级表征; 2)开创了热激活过程的新型时间分辨纳米级表征; 3) 提供有关纳米级 ORR/OER 和相关电荷传输的更深入见解。该项目为研究生和本科生提供广泛的研究机会,通过将研究纳入研讨会和课程来增强课程,并通过校内工程服务学习促进来自中央山谷当地和周边农村社区的 K-12 学生的有效教育该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How an angstrom-thick oxide overcoat enhances durability and activity of nanoparticle-decorated cathodes in solid oxide fuel cells
- DOI:10.1039/d0ta02915g
- 发表时间:2020-08-21
- 期刊:
- 影响因子:11.9
- 作者:Li, Haoyu;Kang, Hung-Sen;Lee, Min Hwan
- 通讯作者:Lee, Min Hwan
Effect of angstrom-level oxide overcoat on Sr segregation behavior of LSM electrodes
- DOI:10.1016/j.ijhydene.2022.07.200
- 发表时间:2022-09-08
- 期刊:
- 影响因子:7.2
- 作者:Li, Haoyu;Kang, Hung-Sen;Lee, Min Hwan
- 通讯作者:Lee, Min Hwan
Nanoscale Surface and Interface Engineering of Solid Oxide Fuel Cells by Atomic Layer Deposition
- DOI:10.1007/s40684-019-00090-9
- 发表时间:2019-07-01
- 期刊:
- 影响因子:4.2
- 作者:Karimaghaloo, Alireza;Koo, Junmo;Lee, Min Hwan
- 通讯作者:Lee, Min Hwan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Hwan Lee其他文献
Conformal Formation of (GeTe2)(1–x)(Sb2Te3)x Layers by Atomic Layer Deposition for Nanoscale Phase Change Memories
通过原子层沉积共形形成纳米级相变存储器 (GeTe2)(1–x)(Sb2Te3)x 层
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Taeyong Eom;Seol Choi;Byung Joon Choi;Min Hwan Lee;Taehong Gwon;S. Rha;Woongkyu Lee;Moonseok Kim;Manchao Xiao;Iain Buchanan;D. Cho;C. Hwang - 通讯作者:
C. Hwang
Influence of target to substrate distance on properties of Y-doped BaZrO3Thin films grown by pulsed laser deposition
靶基距离对脉冲激光沉积 Y 掺杂 BaZrO3 薄膜性能的影响
- DOI:
10.1007/s12541-013-0110-2 - 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
J. Paek;Ikwhang Chang;Min Hwan Lee;S. Ji;S. Cha - 通讯作者:
S. Cha
Evolution of acute lacunar lesions in terms of size and shape: a PICASSO sub-study
急性腔隙性病变在大小和形状方面的演变:毕加索子研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:6
- 作者:
H. S. Kwon;A. Cho;Min Hwan Lee;Dongwhane Lee;D. Jeong;C. Choi;J. Jang;Sungwook Yu;Jong;S. Heo;Ji;S. Kwon - 通讯作者:
S. Kwon
Performance enhancement of thin-film ceramic electrolyte fuel cell using bi-layered yttrium-doped barium zirconate
使用双层钇掺杂锆酸钡增强薄膜陶瓷电解质燃料电池的性能
- DOI:
10.1016/j.tsf.2013.05.063 - 发表时间:
2013 - 期刊:
- 影响因子:2.1
- 作者:
S. Ji;Ikwhang Chang;Yoon Ho Lee;Min Hwan Lee;S. Cha - 通讯作者:
S. Cha
Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells
电解质表面化学和微观结构对固体氧化物燃料电池氧还原动力学的影响
- DOI:
10.1016/j.jpowsour.2015.06.149 - 发表时间:
2015 - 期刊:
- 影响因子:9.2
- 作者:
J. S. Park;J. An;Min Hwan Lee;F. Prinz;Wonyoung Lee - 通讯作者:
Wonyoung Lee
Min Hwan Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Hwan Lee', 18)}}的其他基金
Collaborative Research: Effect of Cyclic Mechanical Stress on Ionic Conduction in Composite Polymer Electrolytes for Solid-State Batteries
合作研究:循环机械应力对固态电池复合聚合物电解质离子传导的影响
- 批准号:
2125640 - 财政年份:2022
- 资助金额:
$ 51.41万 - 项目类别:
Standard Grant
I-Corps: Neuromorphic device derived from resistive switching system
I-Corps:源自电阻开关系统的神经形态设备
- 批准号:
1839169 - 财政年份:2018
- 资助金额:
$ 51.41万 - 项目类别:
Standard Grant
相似国自然基金
新型IIIB族元素掺杂Ga2O3合金设计、带隙与氧空位缺陷调控及其灵敏快速日盲紫外光探测器研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
有序化氧空位SrCoOx结构和性能的光学调控
- 批准号:11905242
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
二元金属层状氧化物OER催化材料的原位HERFD-XAS研究
- 批准号:21905295
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
高性能低功耗的纳米异质结构铟镓锌氧光电晶体管探测器研究
- 批准号:61905116
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
单态氧在锂离子电池中的时间分辨光谱探测及反应动力学研究
- 批准号:21903067
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing immunovascular mechanobiology in pneumonia-associated acute lung injury at the single capillary level
在单毛细血管水平探讨肺炎相关急性肺损伤的免疫血管力学生物学
- 批准号:
10679944 - 财政年份:2023
- 资助金额:
$ 51.41万 - 项目类别:
Probing the Biophysical Basis of Large-Scale Brain Dynamics Using Simultaneous PET/fMRI and EEG/PET/fMRI
使用同步 PET/fMRI 和 EEG/PET/fMRI 探索大规模脑动力学的生物物理基础
- 批准号:
10619126 - 财政年份:2020
- 资助金额:
$ 51.41万 - 项目类别:
Probing the biophysical basis of large-scale brain dynamics using simultaneous PET/fMRI and EEG/PET/fMRI
使用同步 PET/fMRI 和 EEG/PET/fMRI 探索大规模脑动力学的生物物理基础
- 批准号:
10040782 - 财政年份:2020
- 资助金额:
$ 51.41万 - 项目类别:
Engineered flavin-dependent enzymes for probing redox environment and regulation
用于探测氧化还原环境和调节的工程黄素依赖性酶
- 批准号:
9223586 - 财政年份:2017
- 资助金额:
$ 51.41万 - 项目类别:
Engineered flavin-dependent enzymes for probing redox environment and regulation
用于探测氧化还原环境和调节的工程黄素依赖性酶
- 批准号:
10112916 - 财政年份:2017
- 资助金额:
$ 51.41万 - 项目类别: