CAREER: High-Dimensional Geometry and Its Applications
职业:高维几何及其应用
基本信息
- 批准号:1753260
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is in the area of High-dimensional Geometric Analysis, which comprises a family of relatively new and very active areas of mathematics, arising at the interface of Harmonic and Functional Analysis, Convex Geometry and Probability. The primary focus of these areas is the study of high-dimensionality; the consideration often focuses around geometric objects such as convex bodies and hypersurfaces, convex and concave functions, as well as random vectors with certain geometric characteristics. Our experience in low dimensions seems to suggest that when the dimension becomes very large, the geometric properties of objects become more and more complicated and difficult to study. However, many nice, and sometimes surprising, properties arise in high dimensions. Such properties are informally called ``high-dimensional phenomenon''. The study of this phenomenon has been crucial for many applications in computer science, in particular in questions regarding the speed of certain algorithms, as well as in data science. The educational component of this project focuses on supporting junior researchers, with the particular emphasis placed on encouraging female mathematicians. The principal investigator will organize two workshops for junior researchers, featuring research discussions during allocated time, and short lecture courses by leading experts in the field. These workshops are designed to help junior mathematicians to develop new interests and create new collaborations. In addition, a seminar for women in mathematics in Northern Georgia is run by the principal investigator jointly with Yulia Babenko from Kennesaw State University.The principal investigator has been working on several aspects of the geometry in high dimensions. An important direction of this project concerns the study of the inequalities of Brunn-Minkowski type. More specifically, the intriguing question is how those inequalities improve under certain symmetry and convexity assumptions. The techniques involved in studying such questions involve ideas from Harmonic Analysis and Convex Geometry. In addition, the principal investigator shall continue to study small-ball inequalities and their applications to Information theory. One of the important objects studied by the principal investigator in the past is the noise sensitivity of distributions with respect to convex sets, and the principal investigator shall continue to study this quantity and its relations to the central problems in the field. Finally, a different aspect of the project concerns combinatorial properties of convex sets, such as the illumination number. The principal investigator has studied this number in the past, and is working on improving current known estimates on this quantity.
该项目位于高维几何分析的领域,该区域包括一个相对较新且非常活跃的数学领域,这是在谐波和功能分析,凸几何和概率的界面上产生的。这些领域的主要重点是对高维度的研究。考虑因素通常集中在几何对象上,例如凸体和超曲面,凸和凹功能,以及具有某些几何特征的随机向量。我们在低维度上的经验似乎表明,当维度变得很大时,物体的几何特性就会变得越来越复杂和难以研究。但是,许多不错的,有时令人惊讶的是在高维度中出现的。这些特性非正式地称为``高维现象''。对这种现象的研究对于计算机科学中的许多应用至关重要,尤其是有关某些算法速度以及数据科学的问题。该项目的教育组成部分着重于支持初级研究人员,特别是鼓励女性数学家。首席研究人员将为初级研究人员组织两个研讨会,以分配时间进行研究讨论,并由该领域的主要专家进行简短的演讲课程。这些研讨会旨在帮助初级数学家发展新的兴趣并创建新的合作。此外,佐治亚州北部数学妇女的研讨会由肯尼索州立大学的尤里亚·巴本科(Yulia Babenko)共同主持。该项目的一个重要方向是研究Brunn-Minkowski类型的不平等现象。更具体地说,有趣的问题是这些不平等在某些对称性和凸度假设下如何改善。研究此类问题所涉及的技术涉及谐波分析和凸几何形状中的思想。此外,首席研究员应继续研究小球不平等及其对信息理论的应用。过去,主要研究者研究的重要对象之一是分布相对于凸组的噪声敏感性,主要研究者应继续研究该数量及其与该领域中心问题的关系。最后,该项目的一个不同方面涉及凸组集合的组合特性,例如照明编号。首席研究者过去研究了这个数字,并正在努力改善有关此数量的当前已知估计值。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distribution of the Minimum Distance of Random Linear Codes
随机线性码的最小距离分布
- DOI:10.1109/isit44484.2020.9173937
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hao, Jing;Huang, Han;Livshyts, Galyna;Tikhomirov, Konstantin
- 通讯作者:Tikhomirov, Konstantin
Remarks on the Rényi Entropy of a Sum of IID Random Variables
关于 IID 随机变量之和的 Rényi 熵的评论
- DOI:10.1109/tit.2019.2961080
- 发表时间:2019
- 期刊:
- 影响因子:2.5
- 作者:Jaye, Benjamin;Livshyts, Galyna V.;Paouris, Grigoris;Pivovarov, Peter
- 通讯作者:Pivovarov, Peter
An extension of Minkowski's theorem and its applications to questions about projections for measures
- DOI:10.1016/j.aim.2019.106803
- 发表时间:2016-07
- 期刊:
- 影响因子:1.7
- 作者:G. Livshyts
- 通讯作者:G. Livshyts
New bounds on the minimal dispersion
- DOI:10.1016/j.jco.2022.101648
- 发表时间:2022-06-10
- 期刊:
- 影响因子:1.7
- 作者:Litvak, A. E.;Livshyts, G. V.
- 通讯作者:Livshyts, G. V.
Randomized coverings of a convex body with its homothetic copies, and illumination
- DOI:10.1090/proc/14126
- 发表时间:2016-06
- 期刊:
- 影响因子:0
- 作者:G. Livshyts;K. Tikhomirov
- 通讯作者:G. Livshyts;K. Tikhomirov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galyna Livshyts其他文献
Galyna Livshyts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galyna Livshyts', 18)}}的其他基金
NSF-BSF: convexity and symmetry in high dimensions, with applications
NSF-BSF:高维凸性和对称性及其应用
- 批准号:
2247834 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
相似国自然基金
宽视角大尺寸裸眼真三维视频显示技术研究
- 批准号:62335002
- 批准年份:2023
- 资助金额:241 万元
- 项目类别:重点项目
原子尺寸大失配诱导的有序-无序结构设计与热电性能调控
- 批准号:52372209
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
非均匀衰退场景下大尺寸锂离子动力电池优化充电研究
- 批准号:62303278
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于细胞壁组分溶解-再生的木材强化及尺寸稳定性提升机制
- 批准号:32371790
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
针对大尺寸样品超分辨成像的关键问题研究
- 批准号:62375116
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
- 批准号:
10643122 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
- 批准号:
10662142 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
- 批准号:
10680043 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别: