CAREER: Topology and symmetry in non-equilibrium quantum systems

职业:非平衡量子系统的拓扑和对称性

基本信息

  • 批准号:
    1752759
  • 负责人:
  • 金额:
    $ 57.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER award supports theoretical research and education in the dynamics of complex quantum systems away from equilibrium. Recent experimental advances in laser physics have enabled the control of electrons in materials at ultrafast time scales, before they can equilibrate. Likewise, the production of ultracold gases of atoms that are well isolated from their surroundings has enabled the real-time observation of their quantum dynamics. These developments have opened up a new regime of inquiry within quantum mechanics. This research seeks to elucidate complex quantum dynamics in specific settings.The most unexpected discovery in this context is that even extremely energetic quantum particles can remain spatially localized under a broad range of experimental conditions. This is in striking contrast with usual intuition from classical mechanics: if one rapidly shakes a box full of marbles, they do not stay still. When quantum particles localize, not only do they stay still, but they also become potentially usable for controlled quantum computation. The project aims to clarify the precise conditions under which this localization arises, determine near-term experimental observables, and build towards a complete theory of this poorly understood phenomenon. On driving the support of a simple pendulum quickly, the effects of gravity can be undone: the pendulum bob can settle in the inverted position above the point of support. Recent experiments in electronic systems suggest that strong laser radiation can similarly stabilize exotic quantum effects, such as superconductivity at short times, in materials which do not normally superconduct. Another aim of the project is to develop a theory of such dynamically stabilized states so as to control and engineer them for computation and other applications.In addition to mentoring and training graduate and undergraduate students participating in the research program, the PI aims to inspire local middle- and high-school students to explore careers in STEM through "Physics days" involving lab tours, demonstrations, and faculty interactions. Furthermore, this award will support the PI's role in a new public lecture series, which aims to engage the broader Boston community on everyday physics and the frontiers of research. As the future of nonequilibrium physics increasingly relies on physicists with interdisciplinary skills, the PI proposes to develop a new course unifying the approaches to out-of-equilibrium physics in quantum, optical, and biological settings. TECHNICAL SUMMARYThis CAREER award supports theoretical research and education in discovering, characterizing, and controlling quantum orders in many-body systems far from equilibrium. Through a multipronged approach that includes studies in model systems, developing general theorems about quantum steady states, perturbation theory and numerical computation, this project proposes to address the following fundamental issues:1) Strong quenched disorder can indefinitely prevent local equilibration in a well-isolated system, a remarkable phenomenon known as many-body localization. The PI will investigate foundational aspects of many-body localization in higher dimensions, in quasiperiodic settings, and the interplay of localization and topology.2) Exotic nonequilibrium orders with no equilibrium counterpart can arise in driven quantum systems, offering a unique window into robust quantum coherent many-body phenomena. The PI will discover and classify the complex orders accessible with multitone driving and investigate their stability.3) Environmental properties are crucial in state preparation and stabilizing fragile topological states. The PI will investigate the properties of unconventional environments, including anyon baths and baths with memory in experimentally relevant systems and extract their universal features.Remarkable experimental advances in the past decade in the ultrafast spectroscopy of correlated materials and in the construction of well-isolated ultracold atomic and molecular gases have brought real-time dynamics of many-body quantum systems into sharp focus. Concurrently, the quest to build a quantum computer in experimental platforms like superconducting qubits and trapped ions has raised many interesting questions about coherence in driven dissipative systems and has led to a rich exchange of ideas between quantum information theory and condensed matter. Theoretically, the understanding of far-from-equilibrium systems remains challenging because the assumptions underlying statistical mechanics typically fail to apply. The proposed research seeks to broadly advance our understanding of quantum many-body dynamics in closed, driven, and open settings, and to specifically apply it to the observation of novel quantum orders in dynamical settings. The development of new computational methods and the understanding of microscopic time scales in realistic experimental systems will also be a priority.In addition to mentoring and training graduate and undergraduate students participating in the research program, the PI aims to inspire local middle- and high-school students to explore careers in STEM through "Physics days" involving lab tours, demonstrations, and faculty interactions. Furthermore, this award will support the PI's role in a new public lecture series, which aims to engage the broader Boston community on everyday physics and the frontiers of research. As the future of nonequilibrium physics increasingly relies on physicists with interdisciplinary skills, the PI proposes to develop a new course unifying the approaches to out-of-equilibrium physics in quantum, optical, and biological settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一职业奖支持复杂量子系统动态的理论研究和教育,远离平衡。激光物理学的最新实验进步使在超快时间尺度的材料中可以控制电子,然后才能平衡。同样,从周围环境中很好地隔离的原子的超速气体的产生也能够实时观察其量子动力学。这些发展为量子力学开辟了新的询问制度。这项研究旨在阐明在特定环境中的复杂量子动力学。在这种情况下,最出乎意料的发现是,即使是极能有力的量子颗粒也可以在广泛的实验条件下保持空间定位。这与古典力学的通常直觉形成鲜明对比:如果一个人迅速摇动一个装满大理石的盒子,它们就不会静止不动。当量子粒子本地化时,它们不仅会保持静止,而且还可以在受控的量子计算中使用。该项目旨在阐明该定位的确切条件,确定近期的实验性可观察物,并建立在这种鲜为人知的现象的完整理论中。在快速推动简单摆的支撑时,可以解除重力的效果:摆鲍勃可以在支撑点上方的倒置位置定居。电子系统中的最新实验表明,在通常不超级导体的材料中,强的激光辐射可以类似地稳定外来量子效应,例如短时间内的超导性。该项目的另一个目的是开发一种动态稳定状态的理论,以控制和设计它们进行计算和其他应用。除了指导和培训研究生和本科生参加研究计划外,PI旨在激发当地的中学和高中生,以通过STEM中的“物理日”探索“涉及实验室旅游”的STEM中的职业。此外,该奖项将支持PI在新的公开讲座系列中的角色,该系列旨在吸引更广泛的波士顿社区的日常物理和研究前沿。随着非平衡物理学的未来越来越依赖于具有跨学科技能的物理学家,PI提议开发一门新课程,统一量子,光学和生物环境中平衡物理的方法。技术摘要这一职业奖支持理论研究和教育,以发现,表征和控制远离平衡的多体系统中的量子订单。通过包括在模型系统中的研究,开发有关量子稳态的一般定理,扰动理论和数值计算的一般定理的方法,该项目提出了解决以下基本问题:1)1)强烈的淬灭疾病可以无限期防止在良好的溶解系统中的局部平衡,这是一种显着的现象,即已知的许多人本地化。 PI将研究多体定位在较高维度,准环境环境以及定位和拓扑的相互作用中的基础方面。2)异国情调的非平衡顺序与no平衡对应物中的异国情调,在驱动的量子系统中可能会出现,从而在驱动的量子系统中出现,从而为鲁棒的量子量化型号提供独特的量子量子,以使稳健的量子量子构成多体的多体势力。 PI将发现并分类可通过多电器驾驶并研究其稳定性访问的复杂订单。3)环境特性对于状态制备和稳定脆弱的拓扑状态至关重要。 PI将调查非常规环境的特性,包括在实验相关系统中具有记忆的Anyon浴室和浴室,并提取其通用特征。在过去十年中,在相关材料的超级过程中,可取消实验性进步,以及良好的超速原子质和分子气体的构建,使许多人的实时动力学成为了许多型号的焦点。同时,寻求在超导Qubits和Trapped离子等实验平台上构建量子计算机的追求提出了许多有关驱动耗散系统中连贯性的有趣问题,并导致量子信息理论和凝结的物质之间进行了丰富的思想交流。从理论上讲,对远程平衡系统的理解仍然具有挑战性,因为统计力学基础的假设通常无法应用。拟议的研究旨在广泛地促进我们对封闭,驱动和开放环境中量子多体动力学的理解,并专门将其应用于动态环境中新型量子阶的观察。新的计算方法的发展以及对现实实验系统中的微观时间量表的理解也将是一个优先事项。在参加研究计划的指导和培训研究生和本科生的指导和培训研究生和本科生中,PI旨在激发当地的中学和高中生,以在STEM中探索“涉及实验室旅游”的STEM中的职业。此外,该奖项将支持PI在新的公开讲座系列中的角色,该系列旨在吸引更广泛的波士顿社区的日常物理和研究前沿。 As the future of nonequilibrium physics increasingly relies on physicists with interdisciplinary skills, the PI proposes to develop a new course unifying the approaches to out-of-equilibrium physics in quantum, optical, and biological settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shortcuts to dynamic polarization
  • DOI:
    10.1103/physrevb.103.075118
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tamiro Villazon;P. W. Claeys;A. Polkovnikov;A. Chandran
  • 通讯作者:
    Tamiro Villazon;P. W. Claeys;A. Polkovnikov;A. Chandran
Boosting the Quantum State of a Cavity with Floquet Driving
  • DOI:
    10.1103/physrevlett.128.183602
  • 发表时间:
    2022-05-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Long, David M.;Crowley, Philip J. D.;Chandran, Anushya
  • 通讯作者:
    Chandran, Anushya
Partial thermalisation of a two-state system coupled to a finite quantum bath
与有限量子浴耦合的二态系统的部分热化
  • DOI:
    10.21468/scipostphys.12.3.103
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Crowley, Philip;Chandran, Anushya
  • 通讯作者:
    Chandran, Anushya
Topological classification of quasiperiodically driven quantum systems
  • DOI:
    10.1103/physrevb.99.064306
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    P. Crowley;I. Martin;A. Chandran
  • 通讯作者:
    P. Crowley;I. Martin;A. Chandran
Slow thermalization of exact quantum many-body scar states under perturbations
  • DOI:
    10.1103/physrevresearch.2.033044
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Cheng-Ju Lin;A. Chandran;O. Motrunich
  • 通讯作者:
    Cheng-Ju Lin;A. Chandran;O. Motrunich
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anushya Chandran其他文献

Efficient Local Classical Shadow Tomography with Number Conservation
具有数字守恒的高效局部经典阴影断层扫描
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sumner N. Hearth;Michael O. Flynn;Anushya Chandran;C. Laumann
  • 通讯作者:
    C. Laumann
Constraining Many-Body Localization
约束多体定位
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Anushya Chandran;P. Crowley
  • 通讯作者:
    P. Crowley

Anushya Chandran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

非线性拓扑磁系统中磁振子非对称行为及其调控机制
  • 批准号:
    12364020
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
拓扑金属中的非局域量子输运与受对称性保护的拓扑量子相变研究
  • 批准号:
    12304062
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
CaAl2Si2型中心对称稀土磁斯格明子材料拓扑输运性质研究
  • 批准号:
    12374105
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
一类新型不对称CHB逆变器拓扑及其基于控制自由度优化的调制策略研究
  • 批准号:
    52367020
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
港域非对称双向功率流隔离DC/DC变流器拓扑族原理及其运行控制研究
  • 批准号:
    52307215
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Interplay of Symmetry and Topology in Condensed Matter Systems
职业:凝聚态系统中对称性和拓扑的相互作用
  • 批准号:
    1846109
  • 财政年份:
    2019
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
CAREER: Topology and Symmetry Enabled Phenomena in Lasers and Other Non-Hermitian Photonic Media
职业:激光器和其他非厄米光子介质中的拓扑和对称现象
  • 批准号:
    1847240
  • 财政年份:
    2019
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
CAREER: Symmetry, Topology, and Transport in Strongly Interacting Quantum Many-Body Systems
职业:强相互作用量子多体系统中的对称性、拓扑和输运
  • 批准号:
    1753240
  • 财政年份:
    2018
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
CAREER: Topology, Symmetry and Disorder in Strongly Correlated Systems
职业:强相关系统中的拓扑、对称和无序
  • 批准号:
    1455366
  • 财政年份:
    2015
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
CAREER: "Geometry, topology and symmetry in strongly correlated materials"
职业:“强相关材料中的几何、拓扑和对称性”
  • 批准号:
    1455368
  • 财政年份:
    2015
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了