CAREER: Topology and Symmetry Enabled Phenomena in Lasers and Other Non-Hermitian Photonic Media

职业:激光器和其他非厄米光子介质中的拓扑和对称现象

基本信息

  • 批准号:
    1847240
  • 负责人:
  • 金额:
    $ 50.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This CAREER award supports an integrated research, education, and outreach project that focuses on the study of novel phenomena enabled by topology and symmetry in lasers and other photonic media. Topology and symmetry not only play an important role in arts and product designs, but they are also fundamental in determining the behaviors of the microscopic world. Even though such effects are largely elusive to the naked eye, certain aspects of their intriguing properties can be discerned using common optical devices, such as a laser not much more complicated than a price scanner. This project targets a major breakthrough in our understanding of how energy generation and dissipation, ubiquitous in optics and related fields, impact the physical rules governed by topology and symmetry. The outcome of this investigation is expected to advance our fundamental understanding in optics and physics, as well as in materials science and optoelectronics. By employing different paradigms to realize novel states enabled by topology and symmetry, optics and photonics can provide unique platforms beyond what nature has to offer and lead to technology innovations that have vital, real-world consequences. The success of the project may underpin a new generation of sophisticated photonic devices for optical communications and computing, which have far-reaching impacts on our daily lives and the whole society. This project aligns with the National Photonics Initiative, which aims at positioning the nation as a leader in next-generation photonics technologies; it is also an integral part of the strategic plan at the researcher's institute to promote cutting-edge research in photonics and other transformative areas. Leveraging the resources from the City University of New York, the largest urban university system in the US, the researcher will work closely with multiple outreach units to increase the awareness and interest of K-12 students in modern optics and photonics across New York City. The interdisciplinary nature of this project will provide an excellent research opportunity for graduate, undergraduate, and advanced high-school students, and the research will actively recruit and mentor students especially from underrepresented groups in STEM.This project explores the emerging juncture of two of the most energized fields in physics, namely topological phases of matter and non-Hermitian photonics based on novel symmetries. Built on the success of identifying the topological origin of the integer quantum Hall effect, the prediction and observation of topological insulators have created great excitement and put the study of topological phases of matter in the spotlight of modern physics. At the same time, the extension of quantum mechanics into the non-Hermitian regime using parity-time symmetry and its subsequent realization in photonics have led to an explosion of activities, exploring spontaneous symmetry breaking in non-Hermitian photonics and the counterintuitive phenomena they bring. Although there are promising findings combining these two exciting fields, it remains unclear how the complex-valued band structure of a non-Hermitian system is related to its edge states and to what extent the latter are protected by topology and symmetry. This project will tackle these important and other related questions through the following three aims: to investigate unusual topological edge states in non-Hermitian photonic media, focusing on their exotic localization properties and a new type of non-Hermitian Dirac and Weyl points; to examine a novel non-Hermitian symmetry termed complex mirror symmetry and its implication on high-order non-Hermitian degeneracies; and to probe the properties of symmetry-protected photonic zero-mode lasers using both semiclassical and quantum optical tools. Thanks to the flexible control of optical gain and loss, different paradigms towards building topological phases of matter in optics and photonics can be realized in non-Hermitian media, which not only enrich fundamental optical physics but also lead to unprecedented photonic devices with unique optical functionalities.The Physics Division and The Division of Materials Research contribute funds to this award.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖支持一项综合研究,教育和外展项目,该项目的重点是对激光和其他光子媒体中拓扑和对称性实现的新现象的研究。拓扑和对称性不仅在艺术和产品设计中起着重要作用,而且在确定微观世界的行为方面也是基础。即使这种效果在很大程度上是肉眼难以捉摸的,但可以使用常见的光学设备(例如激光比价格扫描仪都复杂得多,它们有趣的特性的某些方面都可以辨别出来。该项目的目标是我们对能源产生和耗散的理解,在光学和相关领域无处不在,影响受拓扑和对称性控制的物理规则。这项研究的结果有望提高我们在光学和物理以及材料科学和光电子学方面的基本理解。通过采用不同的范式实现拓扑和对称性实现的新颖状态,光学和光子学可以提供独特的平台,而不是大自然所能提供的,并带来具有重要,真实世界后果的技术创新。该项目的成功可能是新一代用于光学通信和计算的复杂光子设备,这对我们的日常生活和整个社会产生了深远的影响。该项目与国家光子学计划保持一致,该计划旨在将国家定位为下一代光子技术的领导者。它也是研究人员研究所战略计划不可或缺的一部分,旨在促进光子学和其他变革性领域的尖端研究。 研究人员利用纽约市最大的城市大学系统的资源,将与多个外展单位紧密合作,以提高K-12学生对纽约市现代光学和光子学的意识和兴趣。该项目的跨学科性质将为研究生,本科和高级高中生提供极好的研究机会,该研究将积极招募和指导学生,尤其是来自STEM中代表性不足的团体。物理学中最有能量的领域,即基于新型对称性的物质拓扑阶段和非热光子学的拓扑阶段。建立在确定整数量子厅效应的拓扑起源的成功之上,对拓扑绝缘子的预测和观察产生了极大的兴奋,并将对物质拓扑阶段的研究成为现代物理学的焦点。同时,使用平均时间对称性及其在光子学中的随后实现的量子力学将量子力学扩展到非弱者政权,导致了活动的爆炸,探索了在非赫米蒂亚人光子中的自发对称性破坏,并带来了反直觉现象。 。尽管有一个有希望的发现结合了这两个令人兴奋的领域,但尚不清楚非武术系统的复杂值带的频带结构与其边缘状态以及后者在多大程度上受到拓扑和对称性的保护。该项目将通过以下三个目的解决这些重要和其他相关问题:研究非热光子介质中的异常拓扑边缘状态,重点关注其异国情调的本地化特性以及一种新型的非热迪拉克和Weyl点;检查一种新型的非热对称性,称为复杂的镜子对称性及其对高阶非亚米特式变性的影响;并使用半经典和量子光学工具探测对称性保护光子零模式激光器的性能。得益于对光学增益和损失的灵活控制,可以在非热媒体中实现在光学和光子学中构建物质拓扑阶段的不同范式,这不仅丰富了基本的光学物理学,而且还带来了具有独特光子功能的前所未有的光子设备物理部和材料研究部为该奖项贡献了资金。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast control of vortex microlasers
  • DOI:
    10.1126/science.aba4597
  • 发表时间:
    2020-02-28
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Huang, Can;Zhang, Chen;Song, Qinghai
  • 通讯作者:
    Song, Qinghai
Origin of robust exceptional points: Restricted bulk zero mode
  • DOI:
    10.1103/physreva.101.063823
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. H. Rivero;L. Ge
  • 通讯作者:
    J. H. Rivero;L. Ge
Analysis of Dirac exceptional points and their isospectral Hermitian counterparts
  • DOI:
    10.1103/physrevb.107.104106
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. H. Rivero;Liang Feng;L. Ge
  • 通讯作者:
    J. H. Rivero;Liang Feng;L. Ge
Green's function as a defect state in a boundary value problem
  • DOI:
    10.1103/physrevb.103.195142
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. H. Rivero;L. Ge
  • 通讯作者:
    J. H. Rivero;L. Ge
Spin–orbit microlaser emitting in a four-dimensional Hilbert space
  • DOI:
    10.1038/s41586-022-05339-z
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Zhifeng Zhang;Haoqi Zhao;Shuang Wu;Tianwei Wu;Xingdu Qiao;Zihe Gao;R. Agarwal;S. Longhi;N. Litchinitser;L. Ge;Liang Feng
  • 通讯作者:
    Zhifeng Zhang;Haoqi Zhao;Shuang Wu;Tianwei Wu;Xingdu Qiao;Zihe Gao;R. Agarwal;S. Longhi;N. Litchinitser;L. Ge;Liang Feng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Ge其他文献

As40S59Se1/As2S3 step index fiber for 1-5 mu m supercontinuum generation
用于 1-5 μm 超连续谱产生的 As40S59Se1/As2S3 阶跃折射率光纤
  • DOI:
    10.1016/j.jnoncrysol.2016.07.042
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tang Junzhou;Liu Shuo;Zhu Qingde;Sun Yanan;Li Ge;Yang Zhiyong;Zhang Xianghua;Wang Xunsi;Zhang Peiqing;Dai Shixun;Xu Yinsheng
  • 通讯作者:
    Xu Yinsheng
Experimental evaluation of acceleration waveform replication on electrohydraulic shaking tables: A review
电液振动台上加速度波形复制的实验评估:综述
Study on the algorithm for solving two-fluid seven-equation two-pressure model
二流体七方程二压力模型求解算法研究
  • DOI:
    10.1016/j.anucene.2017.09.021
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Fei Chao;Jianqiang Shan;Junli Gou;Pan Wu;Li Ge
  • 通讯作者:
    Li Ge
Synergetic Effect of Chloride Doping and CH3NH3PbCl3 on CH3NH3PbI3-xClx Perovskite-Based Solar Cells
氯化物掺杂和 CH3NH3PbCl3 对 CH3NH3PbI3-xClx 钙钛矿太阳能电池的协同效应
  • DOI:
    10.1002/cssc.201700487
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Xu Feng;Zhang Taiyang;Li Ge;Zhao Yixin
  • 通讯作者:
    Zhao Yixin

Li Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Ge', 18)}}的其他基金

Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326698
  • 财政年份:
    2023
  • 资助金额:
    $ 50.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Rotation-Time and Inversion-Time Symmetries in Photonic Materials
合作研究:光子材料中旋转时间和反转时间对称性的研究
  • 批准号:
    1506987
  • 财政年份:
    2015
  • 资助金额:
    $ 50.52万
  • 项目类别:
    Continuing Grant

相似国自然基金

cis-β拓扑结构的四氮金属配合物的设计、合成与催化性能研究
  • 批准号:
    21902166
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于C3对称性的二维非狄拉克型拓扑量子态材料的理论研究
  • 批准号:
    11904250
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
从真空拓扑结构的视角研究退禁闭和手征相变的关系
  • 批准号:
    11875127
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
连通自相似分形的拓扑学与拟共形几何学
  • 批准号:
    11871200
  • 批准年份:
    2018
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
对称性破缺下典型耦合振子频率同步相关问题的研究
  • 批准号:
    11605142
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Interplay of Symmetry and Topology in Condensed Matter Systems
职业:凝聚态系统中对称性和拓扑的相互作用
  • 批准号:
    1846109
  • 财政年份:
    2019
  • 资助金额:
    $ 50.52万
  • 项目类别:
    Continuing Grant
CAREER: Topology and symmetry in non-equilibrium quantum systems
职业:非平衡量子系统的拓扑和对称性
  • 批准号:
    1752759
  • 财政年份:
    2018
  • 资助金额:
    $ 50.52万
  • 项目类别:
    Continuing Grant
CAREER: Symmetry, Topology, and Transport in Strongly Interacting Quantum Many-Body Systems
职业:强相互作用量子多体系统中的对称性、拓扑和输运
  • 批准号:
    1753240
  • 财政年份:
    2018
  • 资助金额:
    $ 50.52万
  • 项目类别:
    Continuing Grant
CAREER: Topology, Symmetry and Disorder in Strongly Correlated Systems
职业:强相关系统中的拓扑、对称和无序
  • 批准号:
    1455366
  • 财政年份:
    2015
  • 资助金额:
    $ 50.52万
  • 项目类别:
    Continuing Grant
CAREER: "Geometry, topology and symmetry in strongly correlated materials"
职业:“强相关材料中的几何、拓扑和对称性”
  • 批准号:
    1455368
  • 财政年份:
    2015
  • 资助金额:
    $ 50.52万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了