CAREER: Data-Driven Network Resource Management Systems

职业:数据驱动的网络资源管理系统

基本信息

  • 批准号:
    1751009
  • 负责人:
  • 金额:
    $ 62.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Modern networks require sophisticated systems and algorithms to manage resources efficiently and deliver high quality of experience to users. These systems are critical to services society has come to rely on, from video streaming to social networks to AI applications. Video streaming, for example, involves numerous systems that control everything from the resolution of the video to the network path and the video download speed based on dynamic network conditions. As networks and applications have become more complex, existing approaches have become inadequate and designing algorithms that deliver high performance in all conditions has become exceedingly difficult. The goal of this research is to address this challenge by developing network systems that learn to manage resources automatically through experience by applying new machine learning techniques. This new paradigm, if successful, will make networks simpler to design, more efficient and cost effective, and able to deliver better services to businesses and consumers. This project's goal is to develop the algorithmic and systems foundations for designing resource management systems that use modern reinforcement learning and other predictive control techniques to achieve strong performance across heterogeneous networks and applications. To this end, the researchers plan to build a series of practical systems for important applications, including schedulers for cluster computing systems (e.g., for data-parallel analytics workloads), and context-aware network control protocols (e.g., for adaptive streaming of 360 virtual reality video). In building these systems, the researchers will tackle fundamental challenges that confront data-driven network resource management, including (i) techniques to represent workloads (e.g., graph-structured jobs) and networks (e.g., topologies, queues, flows) to facilitate learning using neural networks; (ii) techniques to handle challenging resource management problems with large and deep action spaces; (iii) techniques to efficiently collect data across a myriad of devices for learning control models; and (iv) techniques to bootstrap learning models from data collected offline and continually train models safely after deploymentThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代网络需要复杂的系统和算法来有效管理资源并为用户提供高质量的体验。这些系统对于社会所依赖的服务至关重要,从视频流到社交网络再到人工智能应用。例如,视频流涉及许多系统,这些系统根据动态网络条件控制从视频分辨率到网络路径以及视频下载速度的所有内容。随着网络和应用程序变得更加复杂,现有的方法已经变得不够充分,设计在所有条件下提供高性能的算法变得极其困难。这项研究的目标是通过开发网络系统来应对这一挑战,该系统通过应用新的机器学习技术,通过经验学习自动管理资源。这种新模式如果成功,将使网络设计更简单、更高效、更具成本效益,并能够为企业和消费者提供更好的服务。该项目的目标是开发用于设计资源管理系统的算法和系统基础,该系统使用现代强化学习和其他预测控制技术来跨异构网络和应用程序实现强大的性能。为此,研究人员计划为重要应用构建一系列实用系统,包括集群计算系统的调度程序(例如,用于数据并行分析工作负载)和上下文感知网络控制协议(例如,用于 360 度视频流的自适应流)虚拟现实视频)。在构建这些系统时,研究人员将解决数据驱动的网络资源管理面临的基本挑战,包括(i)表示工作负载(例如图结构作业)和网络(例如拓扑、队列、流)的技术以促进学习使用神经网络; (ii) 处理具有大而深的行动空间的具有挑战性的资源管理问题的技术; (iii) 跨多种设备有效收集数据以学习控制模型的技术; (iv) 从离线收集的数据中引导学习模型并在部署后持续安全地训练模型的技术该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning
  • DOI:
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravichandra Addanki;S. Venkatakrishnan;Shreyan Gupta;Hongzi Mao;Mohammad Alizadeh
  • 通讯作者:
    Ravichandra Addanki;S. Venkatakrishnan;Shreyan Gupta;Hongzi Mao;Mohammad Alizadeh
Real-Time Video Inference on Edge Devices via Adaptive Model Streaming
  • DOI:
    10.1109/iccv48922.2021.00453
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehrdad Khani Shirkoohi;Pouya Hamadanian;Arash Nasr-Esfahany;Mohammad Alizadeh
  • 通讯作者:
    Mehrdad Khani Shirkoohi;Pouya Hamadanian;Arash Nasr-Esfahany;Mohammad Alizadeh
RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics
RECL:视频分析的响应式资源高效持续学习
Adaptive Neural Signal Detection for Massive MIMO
Robust Query Driven Cardinality Estimation under Changing Workloads
不断变化的工作负载下鲁棒查询驱动的基数估计
  • DOI:
    10.14778/3583140.3583164
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Negi, Parimarjan;Wu, Ziniu;Kipf, Andreas;Tatbul, Nesime;Marcus, Ryan;Madden, Sam;Kraska, Tim;Alizadeh, Mohammad
  • 通讯作者:
    Alizadeh, Mohammad
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Alizadeh其他文献

Practical Rateless Set Reconciliation
实用的无率集对账
  • DOI:
    10.1145/3651890.3672219
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Yang;Y. Gilad;Mohammad Alizadeh
  • 通讯作者:
    Mohammad Alizadeh
SWP: Microsecond Network SLOs Without Priorities
SWP:没有优先级的微秒级网络 SLO
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Zhao;Prateesh Goyal;Mohammad Alizadeh;T. Anderson
  • 通讯作者:
    T. Anderson
dRMT: Disaggregated Programmable Switching (Extended Version)
dRMT:分解可编程开关(扩展版本)
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Chole;Andy Fingerhut;Sha Ma;Anirudh Sivaraman;S. Vargaftik;A. Berger;Gal Mendelson;Mohammad Alizadeh;Shang;I. Keslassy;A. Orda;T. Edsall;Cisco Systems;Technion;Inc VMware
  • 通讯作者:
    Inc VMware
Elasticity Detection: A Building Block for Delay-Sensitive Congestion Control
弹性检测:延迟敏感拥塞控制的构建块
  • DOI:
    10.1145/3232755.3232772
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prateesh Goyal;Akshay Narayan;Frank Cangialosi;Deepti Raghavan;Srinivas Narayana;Mohammad Alizadeh;Harinarayanan Balakrishnan
  • 通讯作者:
    Harinarayanan Balakrishnan
Toward a Marketplace for Aerial Computing
迈向航空计算市场
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arjun Balasingam;Karthik Gopalakrishnan;R. Mittal;Mohammad Alizadeh;H. Balakrishnan;H. Balakrishnan
  • 通讯作者:
    H. Balakrishnan

Mohammad Alizadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohammad Alizadeh', 18)}}的其他基金

Collaborative Research: CNS Core: Small: Understanding Per-Hop Flow Control
合作研究:CNS 核心:小型:了解每跳流量控制
  • 批准号:
    2006827
  • 财政年份:
    2020
  • 资助金额:
    $ 62.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Learning to Cache and Caching to Learn in High Performance Caching Systems
合作研究:CNS 核心:中:学习缓存以及在高性能缓存系统中学习缓存
  • 批准号:
    1955370
  • 财政年份:
    2020
  • 资助金额:
    $ 62.8万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Architecture and Routing Protocols for Payment Channel Networks
CNS 核心:小型:支付通道网络的网络架构和路由协议
  • 批准号:
    1910676
  • 财政年份:
    2019
  • 资助金额:
    $ 62.8万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: A Fast and Flexible Transport Architecture for High Speed Networks
NeTS:小型:协作研究:高速网络的快速灵活的传输架构
  • 批准号:
    1617702
  • 财政年份:
    2016
  • 资助金额:
    $ 62.8万
  • 项目类别:
    Standard Grant

相似国自然基金

基于数据与知识驱动的湍流深度特征提取与本构关系建模
  • 批准号:
    12372288
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
  • 批准号:
    52375516
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于定制PINN的耦合非线性薛定谔系统中数据驱动怪波研究
  • 批准号:
    62305199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代理模型融合与迁移的分布式数据驱动进化计算方法
  • 批准号:
    62376097
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
番茄时序图像表型数据驱动的生长动态监测与诊断模型构建
  • 批准号:
    32301692
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 62.8万
  • 项目类别:
    Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 62.8万
  • 项目类别:
    Standard Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
  • 批准号:
    2236947
  • 财政年份:
    2023
  • 资助金额:
    $ 62.8万
  • 项目类别:
    Standard Grant
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
  • 批准号:
    10644300
  • 财政年份:
    2023
  • 资助金额:
    $ 62.8万
  • 项目类别:
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
  • 批准号:
    10676428
  • 财政年份:
    2023
  • 资助金额:
    $ 62.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了