CAREER: Genome-enabled investigations into the mechanisms and ecological controls on selenium transformations by fungi
职业:通过基因组研究真菌硒转化的机制和生态控制
基本信息
- 批准号:1749727
- 负责人:
- 金额:$ 85.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Selenium (Se), sometimes referred to as "the essential toxin", plays an important role in human and ecosystem health. Selenium is a required micronutrient for most living organisms. At elevated concentrations, however, Se is a toxic element of increasing environmental concern. Selenium bioavailability and toxicity largely depends on the form, or oxidation state, of the compound. Microorganisms, including fungi, play an important role in controlling and transforming Se chemical speciation by promoting a variety of chemical reactions. The processes by which fungi promote Se transformations, however, are largely unresolved, thus limiting knowledge of their specific contributions in nature. Using a genome-enabled approach, this research will examine and resolve the relevant fungal biogeochemical processes that transform Se speciation and ultimately influence the fate and distribution of selenium in nature. Results from the proposed research will also directly inform new technologies for Se bioremediation and will be of additional interest to government and local stake-holders who are regulating or managing Se issues. Through formal student training and engagement in public science communication in collaboration with local museums, this project will further engage, inform, and inspire students and the public on the important role that microorganisms play in maintaining and improving the overall health of planet Earth. To better understand the impact of fungi on biogeochemical processes that influence the fate of selenium in nature, this research will illuminate the currently unresolved molecular mechanisms and pathways that contribute to the aerobic reductive transformation of soluble, toxic Se oxyanions (selenate and selenite) to insoluble Se(0) and organic, volatile Se(-II) compounds by a diverse suite of environmentally-relevant Ascomycete fungi. The specific research objectives are to (1) identify the fungal mechanisms of selenate and selenite reduction in oxic environments, (2) assess the effects of key nutrients and trace metals on fungal Se transformation mechanisms and reaction products, and (3) investigate particle size, morphology, and structure of Se biomineralization products with respect to fungal growth conditions and Se reduction pathway. The genome-enabled approach will elucidate the genes and proteins that contribute to Se reduction by linking their expression to specific functions and resulting Se biominerals and organoselenium compounds. This approach will lead to the development of gene regulatory networks for these common fungal species, which will be highly beneficial for predicting the effect of environmental or biological change on Se speciation and will further benefit the advancement of fungal research in environmental and biological sciences. This project is jointly funded by the Geobiology and Low-Temperature Geochemistry Program in the Division of Earth Sciences and the Systems and Synthetic Biology Cluster in the Division of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
硒(SE)有时被称为“基本毒素”,在人类和生态系统健康中起着重要作用。 硒是大多数生物体所需的微量营养素。 然而,在升高的浓度下,SE是增加环境问题的有毒元素。硒生物利用度和毒性在很大程度上取决于化合物的形式或氧化态。包括真菌在内的微生物通过促进各种化学反应来控制和转化SE化学物种形成。然而,真菌促进SE转化的过程在很大程度上尚未解决,从而限制了其对自然界的特定贡献的知识。 使用基因组的方法,这项研究将检查和解决相关的真菌生物地球化学过程,这些过程会改变SE形成,并最终影响硒自然界的命运和分布。拟议的研究的结果还将直接为新技术提供有关SE生物修复的信息,并将对正在监管或管理SE问题的政府和当地利益持有人更加感兴趣。通过与当地博物馆合作的正式学生培训和参与公共科学传播,该项目将进一步吸引,告知和激发学生和公众微生物在维持和改善地球整体健康方面发挥的重要作用。 为了更好地理解真菌对影响硒自然界命运的生物地球化学过程的影响,这项研究将阐明当前未解决的分子机制和途径,这些机制和途径有助于有氧,有毒,有毒的Se氧化(硒酸盐和苏那酸盐和Selenite)的有氧性减少(由0)和有机体的SEITE(0)和有机物(0)和有机物(0)和有机物(VORINGE SEITE)和有机体的Seitie(selenite)和有机体(VORINGE SEITE)(VORINGE)(VORINGE SEITE) - 与环境相关的结果真菌。 具体的研究目标是(1)确定在疾病环境中硒酸盐和硒酸盐降低的真菌机制,(2)评估关键营养素和微量金属对真菌SE转化机制和反应产物的影响,以及(3)研究粒径,形态,形态,形态学和SE SE生物学化产物与Fungal生长和SE SE REDUCTION相关的生物层化产品的影响。支持基因组的方法将阐明通过将其表达与特定功能联系起来以及由此产生的SE生物胶质和有机素化合物来降低SE的基因和蛋白质。这种方法将导致这些常见的真菌物种的基因调节网络的发展,这将对预测环境或生物学变化对SE物种物种的影响非常有益,并将进一步使真菌研究在环境和生物科学方面的进步。 该项目是由地球科学部以及分子和蜂窝生物科学划分的地球科学和系统和合成生物学集群中的地球生物学和低温地球化学计划共同资助的。该奖项反映了NSF的法定任务,并通过基金会的知识优点和广泛的criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia rectuation the Alteria the Alteria the Alt。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of organic carbon form and concentration on fungal selenite reduction
- DOI:10.1016/j.apgeochem.2021.105163
- 发表时间:2022-01-01
- 期刊:
- 影响因子:3.4
- 作者:Sabuda,Mary C.;Mejia,Jacqueline;Santelli,Cara M.
- 通讯作者:Santelli,Cara M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cara Santelli其他文献
Cara Santelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cara Santelli', 18)}}的其他基金
NSF Convergence Accelerator Track L: Innovative chemical microsensor development for in situ, real-time monitoring of priority water pollutants to protect water quality
NSF Convergence Accelerator Track L:创新化学微传感器开发,用于对重点水污染物进行原位实时监测,以保护水质
- 批准号:
2344373 - 财政年份:2024
- 资助金额:
$ 85.57万 - 项目类别:
Standard Grant
Collaborative Research: Optimization of metal attenuation in biologically-active remediation systems
合作研究:生物活性修复系统中金属衰减的优化
- 批准号:
1743046 - 财政年份:2017
- 资助金额:
$ 85.57万 - 项目类别:
Standard Grant
Collaborative Research: Optimization of metal attenuation in biologically-active remediation systems
合作研究:生物活性修复系统中金属衰减的优化
- 批准号:
1336247 - 财政年份:2013
- 资助金额:
$ 85.57万 - 项目类别:
Standard Grant
相似国自然基金
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于基因组挖掘的新颖二倍半萜定向发现及逆转肿瘤多药耐药活性及作用机制研究
- 批准号:82373755
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于多模态影像基因组学的前列腺癌治疗决策关键信息技术研究
- 批准号:62371010
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于基因组-蛋白质组解析煤烟型肺癌分子特征及临床分群的研究
- 批准号:82360613
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于跨物种泛基因组的古老基因流与物种适应性演化研究
- 批准号:32300490
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Cloud Enabled, Rigorous, Functional Assay Calibration (CERFAC)
支持云的严格功能测定校准 (CERFAC)
- 批准号:
10827690 - 财政年份:2023
- 资助金额:
$ 85.57万 - 项目类别:
Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
- 批准号:
10630541 - 财政年份:2023
- 资助金额:
$ 85.57万 - 项目类别:
Multi-Omics And Synbio Enabled Discovery Of Antifungal Fernene Triterpenes
多组学和 Synbio 发现抗真菌蕨烯三萜
- 批准号:
10601431 - 财政年份:2023
- 资助金额:
$ 85.57万 - 项目类别:
Development of microfluidic enabled CRISPR-Cas9 functional genetic screening technologies for target discovery in cancer immunotherapy
开发微流控 CRISPR-Cas9 功能基因筛选技术,用于癌症免疫治疗中靶点发现
- 批准号:
10549221 - 财政年份:2022
- 资助金额:
$ 85.57万 - 项目类别:
TRTech-PGR: Advancing Developmental Regulator (DR)-enabled and Genotype-independent Plant Transformation and Genome Editing (DR-CRISPR)
TRTech-PGR:推进发育调节器 (DR) 启用且与基因型无关的植物转化和基因组编辑 (DR-CRISPR)
- 批准号:
2206920 - 财政年份:2022
- 资助金额:
$ 85.57万 - 项目类别:
Standard Grant