SCC-Planning: A Data-Driven Framework for Smart Decision-Making in Small and Shrinking Communities
SCC-Planning:小型和萎缩社区智能决策的数据驱动框架
基本信息
- 批准号:1736718
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many American small towns and rural communities have been in decline since the 1980s. In the Midwest, most communities have experienced this through shrinking populations, an exodus of younger people, job losses, and aging infrastructure. Evidence shows that these trends have continued over several decades and are unlikely to be reversed. Yet the research on small and rural communities has focused primarily on documenting and observing aspects of decline or promoting uncertain growth strategies, rather than understanding how communities can protect quality of life and community infrastructure while they shrink. This project aims to fill this gap by developing a new shrink-smart concept for small communities that utilizes data-driven tools to assist them in actively planning for shrinkage. The objective of the planning phase is a pilot study to test the feasibility and reliability of such tools in Iowa. The pilot study will use data from broadly available sources, such as social media, census, state, and municipal databases, for comparison with traditional metrics including unique baseline data from longitudinal polling in Iowa. This pilot study has three goals: 1) to demonstrate the feasibility of applying the shrink-smart concept to rural communities, 2) to assess the feasibility of measuring smart shrinkage through data-driven analysis, and 3) to test visualization methods for data analysis and communication to stakeholders. The project's central hypothesis is that data-driven techniques will identify proxy metrics for indicators of smart shrinkage by using broadly available data sources to estimate the results of qualitative measures such as longitudinal polling. These proxies will replace traditional methods of collecting quality-of-life data, which are time-consuming, expensive and incomplete over large geographic areas. In the planning phase, we will establish criteria for types of smart shrinkage and select six-eight representative communities in Iowa for in-depth analysis. The research will be transformative for the study of small and shrinking communities because of its powerful integrated methodology that combines quantitative data-driven analysis with qualitative understanding of smart shrinkage that is verified through community engagement, spatial analysis, and on-the-ground data collection. This integrated methodology creates a new framework to help community stakeholders understand how and why some small and rural communities are able to protect their quality of life even as they lose population. This approach will also provide new opportunities for communities across the United States to make smart decisions that are likely to mitigate the negative effects of shrinkage before signs of decline appear. In addressing small and rural communities, this project brings attention to underrepresented cases in the research literature. This knowledge will be disseminated to stakeholders and the public through multiple venues in Iowa and beyond, including through Iowa State University Extension and Outreach. All of the extensible data pipelines and visualization techniques will be licensed through open source protocols.
自 20 世纪 80 年代以来,许多美国小镇和农村社区一直在衰落。在中西部,大多数社区都经历过人口减少、年轻人外流、失业和基础设施老化等问题。证据表明,这些趋势已经持续了几十年,而且不太可能逆转。然而,对小型和农村社区的研究主要侧重于记录和观察衰退的各个方面或促进不确定的增长战略,而不是了解社区在萎缩时如何保护生活质量和社区基础设施。该项目旨在通过为小型社区开发一种新的收缩智能概念来填补这一空白,该概念利用数据驱动的工具来帮助他们积极规划收缩。规划阶段的目标是进行试点研究,以测试此类工具在爱荷华州的可行性和可靠性。该试点研究将使用来自社交媒体、人口普查、州和市数据库等广泛可用来源的数据,与传统指标进行比较,包括来自爱荷华州纵向民意调查的独特基线数据。该试点研究有三个目标:1)展示将收缩智能概念应用于农村社区的可行性;2)评估通过数据驱动分析测量智能收缩的可行性;3)测试数据分析的可视化方法以及与利益相关者的沟通。该项目的中心假设是,数据驱动技术将通过使用广泛可用的数据源来估计纵向民意调查等定性措施的结果,从而确定智能收缩指标的代理指标。这些代理将取代收集生活质量数据的传统方法,这些数据在大范围的地理区域内耗时、昂贵且不完整。在规划阶段,我们将制定智能收缩类型的标准,并选择爱荷华州六到八个代表性社区进行深入分析。该研究将对小型和萎缩社区的研究带来变革,因为其强大的综合方法将定量数据驱动的分析与通过社区参与、空间分析和实地数据收集验证的智能收缩的定性理解相结合。这种综合方法创建了一个新框架,帮助社区利益相关者了解一些小型农村社区如何以及为何能够在人口减少的情况下保护其生活质量。这种方法还将为美国各地的社区提供新的机会,让他们做出明智的决策,从而有可能在经济衰退迹象出现之前减轻经济萎缩的负面影响。在解决小型和农村社区问题时,该项目引起了人们对研究文献中代表性不足的案例的关注。这些知识将通过爱荷华州及其他地区的多个场所(包括爱荷华州立大学推广和外展)传播给利益相关者和公众。所有可扩展的数据管道和可视化技术都将通过开源协议获得许可。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using entrepreneurial social infrastructure to understand smart shrinkage in small towns
利用创业型社会基础设施了解小城镇的智能收缩
- DOI:10.1016/j.jrurstud.2018.10.001
- 发表时间:2018-11-01
- 期刊:
- 影响因子:5.1
- 作者:David J. Peters;Sara Hamideh;Kimberly E Zarecor;M. Gh;our;our
- 通讯作者:our
Rural Smart Shrinkage and Perceptions of Quality of Life in the American Midwest
美国中西部农村智能收缩和生活质量感知
- DOI:10.1007/978-3-030-50540-0_20
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Zarecor, K.;Peters, D.;Hamideh, S.
- 通讯作者:Hamideh, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Zarecor其他文献
Kimberly Zarecor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly Zarecor', 18)}}的其他基金
Education DCL: EAGER: Exploring New Pathways into Cybersecurity Careers for Rural English Learners through XR-enabled Educational Methods
教育 DCL:EAGER:通过支持 XR 的教育方法探索农村英语学习者网络安全职业的新途径
- 批准号:
2335751 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SCC-IRG Track 2: Overcoming the Rural Data Deficit to Improve Quality of Life and Community Services in Smart & Connected Small Communities
SCC-IRG 第 2 轨道:克服农村数据不足,提高智能生活质量和社区服务
- 批准号:
1952007 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
内外部数据驱动下韧性供应链网络规划与关键设施防护研究——以风电行业为例
- 批准号:72371028
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
多主体决策环境下数据驱动的电动汽车充电服务系统协同规划研究
- 批准号:72371123
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于自适应动态规划的非线性系统数据驱动最优输出调节
- 批准号:62373090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数据驱动的冗余机器人模型学习与规划策略研究
- 批准号:62306130
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向时空信号场探测的数据/模型混合驱动轨迹规划方法
- 批准号:62303054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
IUCRC Planning Grant Carnegie Mellon University: Center for Materials Data Science for Reliability and Degradation (MDS-Rely)
IUCRC 规划拨款 卡内基梅隆大学:可靠性和退化材料数据科学中心 (MDS-Rely)
- 批准号:
2310663 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
- 批准号:
2332161 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Strategies to Innovate EmeRgENcy Care Clinical Trials Network (SIREN) - Data Coordinating Center
紧急护理临床试验网络 (SIREN) 创新策略 - 数据协调中心
- 批准号:
10550413 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
High-rise living and health: exploring associations between high-rise living, neighbourhood environments, and physical and mental health outcomes of Canadians
高层生活与健康:探索高层生活、邻里环境以及加拿大人身心健康结果之间的关联
- 批准号:
500528 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Operating Grants