GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study

GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究

基本信息

  • 批准号:
    1728360
  • 负责人:
  • 金额:
    $ 38.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Automobile engine oils typically include several different performance additives, each of which serves a crucial role in improving fuel efficiency and engine reliability. One of the additive types that are routinely added to such lubricants are anti-wear additives, which are required to reduce wear and failure when metal-on-metal contact occurs between the various parts within automobile engines. One such additive, a molecule based on a combination of zinc, sulfur, phosphorous, oxygen, and hydrocarbons, is so effective at reducing wear while being inexpensive to produce that it is used in nearly every automotive engine oil. This molecule works by forming surface films at certain contact points within the engine. These films serve as a protective cushion for the underlying metal parts, protecting them from wear. Despite its widespread use, it remains unclear how this molecule generates these protective films. Increasingly, automotive lubricants are being formulated with lower viscosities which help improve fuel economy and reduce undesirable emissions. Unfortunately, the molecules used to formulate these lower viscosity oils can interfere with the anti-wear molecule?s ability to generate protective films and provide adequate wear protection. This Grant Opportunities for Academic Liaison with Industry (GOALI) research aims to contribute to solving this problem by using novel nanotechnology methods to improve our understanding of how the anti-wear protective films are formed and how their formation is affected by interactions with other types of additives. Findings of this research will inform the design of next-generation automotive lubricants and will thus have a direct impact on the U.S. economy through improved energy saving, reductions in maintenance-related costs, and reduction of undesirable emissions.In this research, a quantitative kinetic and thermodynamic understanding of anti-wear tribofilm formation mechanisms will be formulated using novel in-situ atomic force microscopy methods, recently developed at UPenn. In-situ atomic force microscopy enables the direct probe of nanoscale mechanochemistry of zinc dialkyldithiophosphate additives (known as ZDDP-based additives) which drives formation of tribofilms, as well as their interactions with novel basestock and co-additives including molybdenum-based friction modifiers and dispersants. Synergism or antagonism between anti-wear additives and co-additive chemistries will be identified and understood through measurement and interpretation of tribofilm growth kinetics. Together with ex-situ chemical and structural characterization techniques at UPenn, as well as lubricant expertise and component-scale testing at ExxonMobil, this research will help enable predictive design, development, and implementation of advanced formulations for next-generation lubricants. By identifying how co-additives affect the fundamental mechanisms of tribofilm growth, this research will in the longer-term help identify sulfur and phosphorous-free anti-wear additives. Sulfur and phosphorous are known to have deleterious impacts on automotive emissions, and thus developing alternatives to ZDDP additives is crucial for further reducing automotive emissions.
汽车发动机油通常包含几种不同的性能添加剂,每种添加剂在提高燃油效率和发动机可靠性方面都发挥着至关重要的作用。通常添加到此类润滑剂中的添加剂类型之一是抗磨损添加剂,当汽车发动机内的各个部件之间发生金属与金属接触时,需要使用抗磨损添加剂来减少磨损和故障。其中一种添加剂是一种基于锌、硫、磷、氧和碳氢化合物组合的分子,它在减少磨损方面非常有效,而且生产成本低廉,几乎用于所有汽车发动机油中。该分子的工作原理是在发动机内的某些接触点形成表面薄膜。这些薄膜充当底层金属部件的保护垫,保护它们免受磨损。尽管其广泛使用,但仍不清楚该分子如何产生这些保护膜。汽车润滑油越来越多地采用较低粘度配制,这有助于提高燃油经济性并减少不良排放。不幸的是,用于配制这些较低粘度油的分子会干扰抗磨分子生成保护膜并提供足够的磨损保护的能力。这项学术与工业联络的资助机会(GOALI)研究旨在通过使用新颖的纳米技术方法来帮助解决这个问题,以提高我们对抗磨保护膜如何形成以及它们的形成如何受到与其他类型的相互作用的影响的理解。添加剂。这项研究的结果将为下一代汽车润滑油的设计提供信息,从而通过改善节能、降低维护相关成本和减少不良排放,对美国经济产生直接影响。在这项研究中,定量动力学将使用宾夕法尼亚大学最近开发的新型原位原子力显微镜方法来制定对抗磨损摩擦膜形成机制的热力学理解。原位原子力显微镜能够直接探测二烷基二硫代磷酸锌添加剂(称为 ZDDP 基添加剂)的纳米级机械化学,该添加剂可促进摩擦膜的形成,以及它们与新型基料和辅助添加剂(包括钼基摩擦改进剂和添加剂)的相互作用。分散剂。通过测量和解释摩擦膜生长动力学,可以识别和理解抗磨添加剂和共添加剂化学物质之间的协同或拮抗作用。与宾夕法尼亚大学的异位化学和结构表征技术以及埃克森美孚的润滑油专业知识和组件规模测试相结合,这项研究将有助于实现下一代润滑油先进配方的预测设计、开发和实施。通过确定辅助添加剂如何影响摩擦膜生长的基本机制,这项研究从长远来看将有助于识别无硫和无磷的抗磨添加剂。众所周知,硫和磷会对汽车排放产生有害影响,因此开发 ZDDP 添加剂的替代品对于进一步减少汽车排放至关重要。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insights into tribology from in situ nanoscale experiments
从原位纳米级实验深入了解摩擦学
  • DOI:
    10.1557/mrs.2019.122
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jacobs, Tevis D.B.;Greiner, Christian;Wahl, Kathryn J.;Carpick, Robert W.
  • 通讯作者:
    Carpick, Robert W.
An In Situ Method for Simultaneous Friction Measurements and Imaging of Interfacial Tribochemical Film Growth in Lubricated Contacts
润滑接触中界面摩擦化学膜生长的同步摩擦测量和成像的原位方法
  • DOI:
    10.1007/s11249-018-1112-0
  • 发表时间:
    2018-11-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    N. Gosvami;J. Ma;R. Carpick
  • 通讯作者:
    R. Carpick
Nanoscale in situ study of ZDDP tribofilm growth at aluminum-based interfaces using atomic force microscopy
使用原子力显微镜对铝基界面上的 ZDDP 摩擦膜生长进行纳米级原位研究
  • DOI:
    10.1016/j.triboint.2019.106075
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Gosvami, N.N.;Lahouij, I.;Ma, J.;Carpick, R.W.
  • 通讯作者:
    Carpick, R.W.
AFM at the Macroscale: Methods to Fabricate and Calibrate Probes for Millinewton Force Measurements
宏观尺度的 AFM:用于毫牛顿力测量的探针的制造和校准方法
  • DOI:
    10.1007/s11249-019-1134-2
  • 发表时间:
    2019-01-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Nikolay T Garabedian;H. S. Khare;R. Carpick;D. Burris
  • 通讯作者:
    D. Burris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Carpick其他文献

Robert Carpick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Carpick', 18)}}的其他基金

Collaborative Research: Synthetic mucins with tunable structures and programmable interfacial behavior
合作研究:具有可调结构和可编程界面行为的合成粘蛋白
  • 批准号:
    2212162
  • 财政年份:
    2022
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant
US-Ireland R&D Partnership: Mechanics of the Formation and Function of 2D Material Pleats
美国-爱尔兰 R
  • 批准号:
    2041662
  • 财政年份:
    2021
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Continuing Grant
Planning Grant: Engineering Research Center for Tribology to Create Reliable, Efficient, Sustainable Transportation
规划拨款:摩擦学工程研究中心,打造可靠、高效、可持续的运输
  • 批准号:
    1840457
  • 财政年份:
    2018
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Friction in Flatland - Contact, Adhesion, and Friction of 2D Materials
合作研究:平地摩擦 - 二维材料的接触、粘附和摩擦
  • 批准号:
    1761874
  • 财政年份:
    2018
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant
2016 Gordon Research Conference on Tribology: Scientific Advancements for Critical Applications in Friction, Lubrication, and Wear; Lewiston, Maine; June 26 - July 1, 2016
2016 年戈登摩擦学研究会议:摩擦、润滑和磨损关键应用的科学进展;
  • 批准号:
    1642036
  • 财政年份:
    2016
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant
The Gordon Research Conference Tribology: Coupled Challenges at the Moving Interface; Bentley University; Waltham, Massachusetts; 25-28 July 2014
戈登研究会议摩擦学:移动界面的耦合挑战;
  • 批准号:
    1442478
  • 财政年份:
    2014
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Temperature-Dependence of Atomic-Scale Friction
合作研究:原子尺度摩擦的温度依赖性
  • 批准号:
    1401164
  • 财政年份:
    2014
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: High-Throughput Discovery, Development, and Demonstration of Material Systems to Enable Low-Power NEMS-Based Computation
DMREF/协作研究:材料系统的高通量发现、开发和演示,以实现基于 NEMS 的低功耗计算
  • 批准号:
    1334241
  • 财政年份:
    2013
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Deciphering the Mechanisms of Wear to Enable High Performance Tip-Based Nanomanufacturing
GOALI/合作研究:破译磨损机制,实现基于尖端的高性能纳米制造
  • 批准号:
    1200019
  • 财政年份:
    2012
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
  • 批准号:
    1141142
  • 财政年份:
    2012
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Standard Grant

相似海外基金

XVIR-110 an ultra-long-acting INSTI for HIV pre-exposure prophylaxis in IND-enabling studies
XVIR-110 是一种超长效 INSTI,用于 IND 支持研究中的 HIV 暴露前预防
  • 批准号:
    10764186
  • 财政年份:
    2023
  • 资助金额:
    $ 38.38万
  • 项目类别:
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    RGPIN-2019-04750
  • 财政年份:
    2022
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
  • 批准号:
    561415-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Alliance Grants
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
  • 批准号:
    561415-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Alliance Grants
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    RGPIN-2019-04750
  • 财政年份:
    2022
  • 资助金额:
    $ 38.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了