DMREF/Collaborative Research: High-Throughput Discovery, Development, and Demonstration of Material Systems to Enable Low-Power NEMS-Based Computation
DMREF/协作研究:材料系统的高通量发现、开发和演示,以实现基于 NEMS 的低功耗计算
基本信息
- 批准号:1334241
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Although they have fueled a global technology revolution, the electronic transistors that lie at the heart of digital logic in computers are very energy-inefficient. To enable lower power computation, sever-al radically different designs to replace or complement transistors are under consideration. One of them is the nanoelectromechanical switch an extremely small device that physically opens and closes to turn signals on and off. These have potential to be up to one million times more energy efficient than transis-tors. However, they suffer from insufficient reliability. Specifically, the electrically conducting contacting surfaces need to be able to open and close up to a quadrillion times without wearing out or becoming con-taminated, and materials that can do this have not yet been developed. This project's objectives are: (1) to understand the failure mechanisms that occur in these switches; and (2) to discover and develop new ma-terials and operating conditions with sufficient reliability. The approach will involve performing compu-tational modeling of failure mechanisms at atomistic scales, and performing nanoscale microscopy exper-iments. Models and experiments will be integrated for high-throughput screening of materials. A large array of candidate materials will be canvassed, selecting those that possess required characteristics includ-ing electrical conductivity, wear resistance, and resistance to oxidation and buildup of contamination. The most promising ones will be tested in prototype nanoscale devices to ultimately identify materials and conditions that enable this new technology.If successful, this research will discover new materials and operating conditions that make nanoelec-tromechanical switches a viable technology for future-generation low-power computers and portable de-vices. This has potential to save large amounts of energy, thus helping to address the environmental, eco-nomic, and security challenges arising from high energy consumption. Furthermore, this work will help maintain U.S. competitiveness in information technology by continuing technological progress in a key economic sector. Students conducting research in the team?s multiple labs will develop strong skills to lead future research in energy-efficient nanodevices, materials science, and tribology. Undergraduate stu-dents will benefit from a unique dual-institution summer internship exchange that will be implemented, and team-taught short-courses at conferences will broadly disseminate insights from these innovations.
尽管它们推动了全球技术革命,但作为计算机数字逻辑核心的电子晶体管的能源效率非常低。为了实现更低的功耗计算,正在考虑几种完全不同的设计来替换或补充晶体管。其中之一是纳米机电开关,这是一种非常小的设备,可以通过物理方式打开和关闭以打开和关闭信号。它们的能源效率有可能比晶体管高一百万倍。然而,它们的可靠性不足。具体来说,导电接触表面需要能够打开和关闭多达千万次而不磨损或被污染,而能够做到这一点的材料尚未开发出来。该项目的目标是:(1)了解这些开关中发生的故障机制; (2) 发现和开发足够可靠的新材料和操作条件。该方法将涉及在原子尺度上对失效机制进行计算建模,并进行纳米级显微镜实验。模型和实验将被整合以进行材料的高通量筛选。将仔细研究大量候选材料,选择那些具有所需特性的材料,包括导电性、耐磨性、抗氧化性和抗污染性。最有前途的技术将在原型纳米级设备中进行测试,以最终确定实现这项新技术的材料和条件。如果成功,这项研究将发现新的材料和操作条件,使纳米机电开关成为未来一代低功耗技术的可行技术。为计算机和便携式设备供电。这有可能节省大量能源,从而有助于解决高能源消耗带来的环境、经济和安全挑战。此外,这项工作将通过持续关键经济领域的技术进步来帮助保持美国在信息技术方面的竞争力。在该团队的多个实验室进行研究的学生将培养强大的技能,以领导节能纳米设备、材料科学和摩擦学的未来研究。本科生将受益于即将实施的独特的双机构暑期实习交流,并且在会议上团队讲授的短期课程将广泛传播这些创新的见解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The 2019 materials by design roadmap
2019 年材料设计路线图
- DOI:10.1088/1361-6463/aad926
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Alberi, Kirstin;Nardelli, Marco Buongiorno;Zakutayev, Andriy;Mitas, Lubos;Curtarolo, Stefano;Jain, Anubhav;Fornari, Marco;Marzari, Nicola;Takeuchi, Ichiro;Green, Martin L;et al
- 通讯作者:et al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Carpick其他文献
Robert Carpick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Carpick', 18)}}的其他基金
Collaborative Research: Synthetic mucins with tunable structures and programmable interfacial behavior
合作研究:具有可调结构和可编程界面行为的合成粘蛋白
- 批准号:
2212162 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
US-Ireland R&D Partnership: Mechanics of the Formation and Function of 2D Material Pleats
美国-爱尔兰 R
- 批准号:
2041662 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Planning Grant: Engineering Research Center for Tribology to Create Reliable, Efficient, Sustainable Transportation
规划拨款:摩擦学工程研究中心,打造可靠、高效、可持续的运输
- 批准号:
1840457 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Friction in Flatland - Contact, Adhesion, and Friction of 2D Materials
合作研究:平地摩擦 - 二维材料的接触、粘附和摩擦
- 批准号:
1761874 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study
GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究
- 批准号:
1728360 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
2016 Gordon Research Conference on Tribology: Scientific Advancements for Critical Applications in Friction, Lubrication, and Wear; Lewiston, Maine; June 26 - July 1, 2016
2016 年戈登摩擦学研究会议:摩擦、润滑和磨损关键应用的科学进展;
- 批准号:
1642036 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
The Gordon Research Conference Tribology: Coupled Challenges at the Moving Interface; Bentley University; Waltham, Massachusetts; 25-28 July 2014
戈登研究会议摩擦学:移动界面的耦合挑战;
- 批准号:
1442478 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Temperature-Dependence of Atomic-Scale Friction
合作研究:原子尺度摩擦的温度依赖性
- 批准号:
1401164 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Deciphering the Mechanisms of Wear to Enable High Performance Tip-Based Nanomanufacturing
GOALI/合作研究:破译磨损机制,实现基于尖端的高性能纳米制造
- 批准号:
1200019 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
- 批准号:
1141142 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323118 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
- 批准号:
2323316 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant