DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences

DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵

基本信息

  • 批准号:
    1727122
  • 负责人:
  • 金额:
    $ 46.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Thermal energy, also known as heat, flows naturally from hot objects to cold objects. One consequence of this heat flow is that it is difficult to create objects with localized "hot spots," even when heat is applied to a single spot. When touching a hot pan on the stove, the temperature of the lid on top of the pan is not much different than the bottom where the heat is applied. Depositing and maintaining thermal energy in a small region of space becomes even more challenging as the object's size approaches the tens to hundreds of nanometers, or about 1,000 times smaller than a human hair. Yet, the ability to control heat flow and thus temperature at nanoscopic dimensions has important implications for applications ranging from data storage and the local control of chemical reactions to photothermal therapies for disease treatment and pain management through ion channel stimulation. With support from the Designing Materials to Revolutionize and Engineer our Future (DMREF) Program in the Division of Chemistry (CHE) and the Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET), Professor David J. Masiello from the University of Washington, Professor Katherine A. Willets from Temple University, and Professor Stephan Link from Rice University are developing methods to theoretically design and experimentally realize a new class of materials capable of controllably directing temperature increases to nanoscale regions of space. Beyond impacting a wide variety of applications, the project is also facilitating the interdisciplinary training of students and postdoctoral researchers through student exchange between the three research groups. Together, the researchers and their students are designing plasmonic nanostructures that exploit Fano interferences to focus and convert optical radiation into precise nanoscopic temperature profiles that are actively tunable from the far-field. They are developing computer simulations to solve the coupled Maxwell-heat diffusion equations and using them to design novel plasmonic nanostructures with Fano interferences that are capable of localizing spatial temperature profiles at dimensions below the diffraction limit. The best candidates are then created in the laboratory and characterized using optical microscopies. Diffraction-limited, single-nanoparticle photothermal absorption spectroscopy techniques measure the heat power absorbed as well as the associated temperature change induced in the target material. Fluorescently-labeled stem-loop DNA structures are used to achieve super-resolution imaging of the nanoscopic temperature profile. The imaging results are then input into the design of the next generation of structures, providing the iterative feedback that is critical to the project's success.
热能,也称为热量,自然地从热物体流向冷物体。这种热流的一个后果是,即使将热量施加到单个点,也很难创建具有局部“热点”的物体。 当触摸炉子上的热锅时,锅盖上的温度与加热的底部没有太大差异。 当物体的尺寸接近数十至数百纳米(比人类头发丝小约 1,000 倍)时,在小空间区域沉积和维持热能变得更具挑战性。 然而,在纳米尺度上控制热流和温度的能力对于从数据存储和化学反应的局部控制到通过离子通道刺激进行疾病治疗和疼痛管理的光热疗法等应用具有重要意义。 在化学系 (CHE) 和化学、生物工程、环境和运输系统 (CBET) 系的设计材料以彻底改变和设计我们的未来 (DMREF) 项目的支持下,来自密歇根大学的 David J. Masiello 教授华盛顿大学、天普大学的 Katherine A. Willets 教授和莱斯大学的 Stephan Link 教授正在开发方法,从理论上设计并通过实验实现一类新型材料,该材料能够可控地将温度升高引导到纳米级空间区域。 除了影响广泛的应用之外,该项目还通过三个研究小组之间的学生交流,促进学生和博士后研究人员的跨学科培训。研究人员和他们的学生正在共同设计等离子体纳米结构,利用法​​诺干涉来聚焦光辐射并将其转换为精确的纳米级温度分布,这些温度分布可以从远场主动调节。 他们正在开发计算机模拟来求解耦合的麦克斯韦热扩散方程,并使用它们来设计具有法诺干涉的新型等离子体纳米结构,该结构能够在低于衍射极限的尺寸上定位空间温度分布。然后在实验室中创建最好的候选者,并使用光学显微镜进行表征。衍射限制的单纳米颗粒光热吸收光谱技术可测量吸收的热功率以及目标材料中引起的相关温度变化。 荧光标记的茎环 DNA 结构用于实现纳米级温度分布的超分辨率成像。然后将成像结果输入下一代结构的设计中,提供对项目成功至关重要的迭代反馈。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-Particle Hyperspectral Imaging Reveals Kinetics of Silver Ion Leaching from Alloy Nanoparticles
单颗粒高光谱成像揭示了合金纳米颗粒中银离子浸出的动力学
  • DOI:
    10.1021/acsnano.0c10150
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Al;Stein, Frederic;Flatebo, Charlotte;Rehbock, Christoph;Hosseini Jebeli, Seyyed Ali;Landes, Christy F.;Barcikowski, Stephan;Link, Stephan
  • 通讯作者:
    Link, Stephan
Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods
波长相关光热成像探针亚衍射耦合等离子体纳米棒之间的纳米级温度差异
  • DOI:
    10.1021/acs.nanolett.1c01740
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Hosseini Jebeli, Seyyed Ali;West, Claire A.;Lee, Stephen A.;Goldwyn, Harrison J.;Bilchak, Connor R.;Fakhraai, Zahra;Willets, Katherine A.;Link, Stephan;Masiello, David J.
  • 通讯作者:
    Masiello, David J.
Quantitative Analysis of Nanorod Aggregation and Morphology from Scanning Electron Micrographs Using SEMseg
使用 SEMseg 通过扫描电子显微照片定量分析纳米棒聚集和形态
  • DOI:
    10.1021/acs.jpca.0c03190
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baiyasi, Rashad;Gallagher, Miranda J.;McCarthy, Lauren A.;Searles, Emily K.;Zhang, Qingfeng;Link, Stephan;Landes, Christy F.
  • 通讯作者:
    Landes, Christy F.
Active Far-Field Control of the Thermal Near-Field via Plasmon Hybridization
通过等离子激元杂交对热近场进行主动远场控制
  • DOI:
    10.1021/acsnano.9b04968
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Bhattacharjee, Ujjal;West, Claire A.;Jebeli, Seyyed Ali;Goldwyn, Harrison J.;Kong, Xiang;Hu, Zhongwei;Beutler, Elliot K.;Chang, Wei;Willets, Katherine A.;Link, Stephan;et al
  • 通讯作者:
    et al
Nonlinear effects in single-particle photothermal imaging
单粒子光热成像中的非线性效应
  • DOI:
    10.1063/5.0132167
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    West, Claire A.;Lee, Stephen A.;Shooter, Jesse;Searles, Emily K.;Goldwyn, Harrison J.;Willets, Katherine A.;Link, Stephan;Masiello, David J.
  • 通讯作者:
    Masiello, David J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephan Link其他文献

On-Chip Lock-In Detection for Ultrafast Spectroscopy of Single Particles
用于单粒子超快光谱分析的片上锁定检测
  • DOI:
    10.1021/acs.jpcc.4c01814
  • 发表时间:
    2024-05-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Adhikari;Niklas Gross;Kelly S. Wilson;Ojasvi Verma;Zhenyang Jia;C. L;es;es;Sean T. Roberts;Stephan Link
  • 通讯作者:
    Stephan Link
Electron–Phonon Relaxation Dynamics of Hot Electrons in Gold Nanoparticles Are Independent of Excitation Pathway
金纳米粒子中热电子的电子-声子弛豫动力学与激发路径无关
  • DOI:
    10.1021/acs.jpcc.3c04680
  • 发表时间:
    2023-10-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei;Autumn Bruncz;Behnaz Ostovar;Emily K Searles;Sadie Brasel;G. Hartl;Stephan Link
  • 通讯作者:
    Stephan Link
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea
  • 通讯作者:
    J. Shea
High-Throughput Screening of Optical Properties of Glass-Supported Plasmonic Nanoparticles Fabricated by Polymer Pen Lithography
高通量筛选聚合物笔光刻法制备的玻璃支撑等离子体纳米颗粒的光学性质
  • DOI:
    10.1021/acs.jpcc.3c04521
  • 发表时间:
    2023-09-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niklas Gross;William Wang;Sadie Brasel;Emily K Searles;Briley B. Bourgeois;Jennifer A. Dionne;C. L;es;es;Stephan Link
  • 通讯作者:
    Stephan Link
Plasmon Energy Transfer Driven by Electrochemical Tuning of Methylene Blue on Single Gold Nanorods.
单金纳米棒上亚甲基蓝的电化学调节驱动的等离子激元能量转移。
  • DOI:
    10.1021/acsnano.3c05387
  • 发表时间:
    2023-09-06
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Hyuncheol Oh;Emily K Searles;Subhojyoti Chatterjee;Zhenyang Jia;Stephen A. Lee;Stephan Link;C. L;es;es
  • 通讯作者:
    es

Stephan Link的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephan Link', 18)}}的其他基金

Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
  • 批准号:
    2316670
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Direct Interfacial Charge Separation in Plasmonic Heterostructures Revealed by Single-Particle Spectroscopy
单粒子光谱揭示等离激元异质结构中的直接界面电荷分离
  • 批准号:
    2225592
  • 财政年份:
    2022
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118420
  • 财政年份:
    2021
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Nanoscale Polarization Control for Single Molecule Detection: Circular and Trochoidal Dichroism
用于单分子检测的纳米级偏振控制:圆和摆线二色性
  • 批准号:
    1903980
  • 财政年份:
    2019
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
OP: Ultrafast and Optomechanical Properties of Individual Plasmonic Antennas
OP:单个等离子体天线的超快和光机械特性
  • 批准号:
    1608917
  • 财政年份:
    2016
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Chiral Plasmonics at the Single Nanoparticle and Single Molecule Level
单纳米颗粒和单分子水平的手性等离子体
  • 批准号:
    1507745
  • 财政年份:
    2015
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Probing Dynamics and Structure of the Nanoparticle Protein Corona to Understand Its Impacts on Environmental Health and Safety
探测纳米颗粒蛋白电晕的动力学和结构,以了解其对环境健康和安全的影响
  • 批准号:
    1438634
  • 财政年份:
    2014
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
CAREER: Novel Plasmonic Properties of Individual Nanoparticle Chains Investigated by Correlated Structural Imaging and Single Particle Spectroscopy
职业:通过相关结构成像和单粒子光谱研究单个纳米粒子链的新颖等离子体特性
  • 批准号:
    0955286
  • 财政年份:
    2010
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
  • 批准号:
    2323316
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了