Hybrid Nanoparticles for Kinetically Controlled Cancer Targeting Using Biomimetic Cell Rolling and Multivalent Binding

利用仿生细胞滚动和多价结合用于动力学控制癌症靶向的混合纳米颗粒

基本信息

  • 批准号:
    1741560
  • 负责人:
  • 金额:
    $ 12.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Non-Technical Part:This award by the Biomaterials Program in the Division of Materials Research, and co-funded by the Thermal Transport Processes Program (CBET/ENG) to the University of Illinois, Chicago, is to create a class of novel dendrimer-polymer hybrid nano-particles that utilizes a combination of biomimetic tumor targeting strategies of cell rolling and multivalent binding. The present project will mimic naturally occurring processess (cell rolling and multivalent binding) for enhanced tumor targeting, integrated within a signle hybrid NP system. This "mothership" approach will have major implications and potentially high reward in the emerging area of biomimetic nanotechnology. Successful achievement of the proposed study will: i) significantly advance the understanding of cancer targeting using multiple targeting mechanisms in a kinetically controlled manner; ii) establish a database describing the effects of spatial construction of targeting agents, targeting kinetics, particle properties, polymer degradation rates, multivalent effect, nanoparticle rolling, and tumor penetration on targeting efficacy; and potentially iii) present a novel, transformative platform technology for targeted cancer therapy. The PI will develop and expand education and outreach activities involving, among others, high-school internship programs in underserved areas, and research experiences for undergraduates and teachers. Additionally, the research results and experimental techniques developed in this program will be disseminated via publications and proceedings at international conferences as well as via integration into classroom instruction, both at the undergraduate and graduate levels.Technical Part: Although recent advances in nanotechnology have culminated in a number of promising delivery platforms for tumor targeting, successful clinical implementation of such technologies has been hindered largely due to a lack of fundamental understanding on nano-bio interactions, resulting in clinically unmet targeting efficacy. The multifaceted nature of cancer has often caused ineffective targeting of nanocarriers that rely on one, or less commonly two, of currently available targeting strategies, i.e., passive and active targeting. This award is to support an effort to develop a new nanocarrier system that integrates multiple targeting mechanisms within a single delivery platform through hybridization of poly(amidoamine) (PAMAM) dendrimers and polymeric nanoparticles (NPs). It is hypothesized that overall targeting efficacy of the novel hybrid nanoparticles (NPs), or nanohybrids, will be substantially enhanced using biomimetic targeting approaches in a kinetically controlled manner. Through chemical, physical, and biological studies, sequential utilization of three targeting mechanisms will be explored: i) Recruiting of the hybrid NPs from bloodstream to angiogenic endothelia through leukocyte-mimicking rolling; ii) Extravasation of the size-controlled hybrid NPs (~100 nm in diameter) to tumors, facilitated by the dynamic rolling and the enhanced permeability and retention effect; and iii) Multivalent targeting and efficient tumor penetration of targeted dendrimers to individual tumor cells upon release through diffusion from and degradation of the NP shell. The new design of the nanocarriers will be validated through a series of physicochemical and biological assays.
Non-Technical Part:This award by the Biomaterials Program in the Division of Materials Research, and co-funded by the Thermal Transport Processes Program (CBET/ENG) to the University of Illinois, Chicago, is to create a class of novel dendrimer-polymer hybrid nano-particles that utilizes a combination of biomimetic tumor targeting strategies of cell rolling and multivalent binding. 本项目将模仿自然发生的过程(细胞滚动和多价结合),以增强肿瘤靶向,并集成在标志混合NP系统中。这种“母舰”方法将在仿生纳米技术的新兴领域具有重大影响和潜在的高度奖励。拟议研究的成功实现将:i)以动力学控制的方式使用多种靶向机制显着提高对癌症靶向的理解; ii)建立一个数据库,描述靶向剂的空间构建,靶向动力学,颗粒特性,聚合物降解速率,多价效应,纳米颗粒滚动和肿瘤渗透对靶向功效的影响;并有可能iii)提出了一种用于靶向癌症治疗的新型,变革性的平台技术。 PI将开发和扩大涉及服务不足领域的高中实习计划的教育和外展活动,以及针对本科生和教师的研究经验。此外,该计划中开发的研究结果和实验技术将通过国际会议的出版物和诉讼以及在本科和研究生级别的课堂教学中的整合到课堂教学中进行分散。技术技术的最新进展:纳米技术的最新进展已在纳米技术方面取得了成功,在成功的临床平台中,纳米技术的范围已导致了许多有前途的临床范围,这些技术是在许多方面的范围,这些技术是在许多方面的范围,这些技术是在许多方面的范围,这些技术的实施率是众多的,这些技术的范围已成为众多技术的责任。对纳米生物相互作用的基本了解,导致临床未满足的靶向功效。癌症的多方面性质通常导致纳米载体的靶向无效,而纳米载体依赖于当前可用的靶向策略,即被动和主动靶向的纳米载体。该奖项是为了支持开发一种新的纳米载体系统,该系统通过杂交聚(amidoamine)(PAMAM)(PAMAM)树枝状聚合物和聚合物纳米颗粒(NPS)将多种靶向机制集成到单个输送平台中。假设新型杂交纳米颗粒(NP)或纳米杂交的总体靶向疗效将通过动力学控制方式实质上增强。 通过化学,物理和生物学研究,将探讨三种靶向机制的顺序利用:i)通过模拟白细胞滚动募集从血液从血液到血管生成内皮的杂种NP; ii)将尺寸控制的杂化NP(直径约100 nm)渗入肿瘤,并通过动态滚动和增强的渗透性和保留效果促进; iii)通过从NP壳的扩散和降解释放后,靶向树状聚合物对单个肿瘤细胞的多价靶向和有效的肿瘤渗透。纳米载体的新设计将通过一系列物理化学和生物学测定得到验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seungpyo Hong其他文献

Nanoscale polymeric penetration enhancers in topical drug delivery
局部给药中的纳米级聚合物渗透促进剂
  • DOI:
    10.1039/c3py00049d
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yang Yang;Jason Bugno;Seungpyo Hong
  • 通讯作者:
    Seungpyo Hong
Patterning of alternating proteins inside a microfluidic channel for enhanced tumor cell isolation
微流体通道内交替蛋白质的图案化以增强肿瘤细胞分离
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Launiere;M. Gaskill;J. Myung;Seungpyo Hong;D. Eddington
  • 通讯作者:
    D. Eddington
Multifunctional Dendritic Nanocarriers: The Architecture and Applications in Targeted Drug Delivery
多功能树突状纳米载体:靶向药物输送的结构和应用
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan M. Pearson;J. Bae;Seungpyo Hong
  • 通讯作者:
    Seungpyo Hong
Library of binding protein scaffolds (LibBP): a computational platform for selection of binding protein scaffolds
结合蛋白支架库(LibBP):用于选择结合蛋白支架的计算平台
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seungpyo Hong;Dongsup Kim
  • 通讯作者:
    Dongsup Kim
Hierarchical OBB-sphere tree for large-scale range data management
用于大规模范围数据管理的分层 OBB 球树

Seungpyo Hong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seungpyo Hong', 18)}}的其他基金

Collaborative Research: Integrative Adaptation of Dendrimer-peptide Conjugates for Cancer Immunotherapy
合作研究:树状聚合物-肽缀合物对癌症免疫治疗的综合适应
  • 批准号:
    2211932
  • 财政年份:
    2022
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Continuing Grant
Biomimetic Dendrimer-Exosome Hybrid Nanoparticles for Efficient Cancer Targeting
用于有效癌症靶向的仿生树状聚合物-外泌体混合纳米颗粒
  • 批准号:
    1808251
  • 财政年份:
    2018
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Continuing Grant
Hybrid Nanoparticles for Kinetically Controlled Cancer Targeting Using Biomimetic Cell Rolling and Multivalent Binding
利用仿生细胞滚动和多价结合用于动力学控制癌症靶向的混合纳米颗粒
  • 批准号:
    1409161
  • 财政年份:
    2014
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Continuing Grant
Biomimetic Multifunctional Device for Quantification and Analysis of Circulating Tumor Cells (CTC)
用于循环肿瘤细胞 (CTC) 定量和分析的仿生多功能装置
  • 批准号:
    0931472
  • 财政年份:
    2009
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Standard Grant

相似国自然基金

不同尺度锑纳米颗粒的钠化相变热力学与动力学研究
  • 批准号:
    12374003
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
混合纳米流体沸腾传热颗粒输运-团聚特性及气泡动力学行为研究
  • 批准号:
    52266002
  • 批准年份:
    2022
  • 资助金额:
    33.00 万元
  • 项目类别:
    地区科学基金项目
聚合物复合材料中纳米颗粒转动扩散动力学及影响机制
  • 批准号:
    52206065
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
聚合物复合材料中纳米颗粒转动扩散动力学及影响机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混合纳米流体沸腾传热颗粒输运-团聚特性及气泡动力学行为研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Dynamic-covalent Interactions for Enhanced Stabilization of Kinetically-arrested Nanoparticles
动态共价相互作用增强动力学捕获纳米颗粒的稳定性
  • 批准号:
    2003789
  • 财政年份:
    2020
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Standard Grant
Accomplishment Based Renewal (ABR): Pyrite, metal sulfide and aluminosilicate nanoparticles as kinetically stable sources of iron and other metals to the ocean
基于成就的更新(ABR):黄铁矿、金属硫化物和铝硅酸盐纳米颗粒作为海洋中铁和其他金属的动力学稳定来源
  • 批准号:
    1558712
  • 财政年份:
    2016
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Standard Grant
Hybrid Nanoparticles for Kinetically Controlled Cancer Targeting Using Biomimetic Cell Rolling and Multivalent Binding
利用仿生细胞滚动和多价结合用于动力学控制癌症靶向的混合纳米颗粒
  • 批准号:
    1409161
  • 财政年份:
    2014
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Continuing Grant
Pyrite nanoparticles are a kinetically stable iron source to the ocean
黄铁矿纳米粒子是海洋中动力学稳定的铁源
  • 批准号:
    1131109
  • 财政年份:
    2011
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Standard Grant
Colloidal High Entropy Alloy (HEA) Nanoparticles by kinetically controlled Laser Ablation Synthesis in Liquids- Formation mechanism and their integration into Biphasic Core-Shell Morphologies
液体形成机制中通过动力学控制激光烧蚀合成胶体高熵合金(HEA)纳米颗粒及其与双相核壳形态的整合
  • 批准号:
    277627168
  • 财政年份:
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了