Biomimetic Multifunctional Device for Quantification and Analysis of Circulating Tumor Cells (CTC)
用于循环肿瘤细胞 (CTC) 定量和分析的仿生多功能装置
基本信息
- 批准号:0931472
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0931472HongSelective detection and isolation of circulating tumor cells (CTCs) from blood provide valuable clinical insight into disease diagnosis and prognosis as CTCs have been demonstrated to be an independent predictor of disease progression and survival. Additionally, accurate CTC numbers can be used to manage the disease by monitoring changes in tumors during treatment. However, CTCs are extremely rare, comprising as few as one in 109 hematologic cells in the blood of patients with metastatic cancer, effective recognition and separation of the rare cells remain a tremendous challenge. The central objective of this proposal is to mimic physiological, cellular behaviors within a microfluidic chip that can separate and capture CTCs with high efficiency and specificity. To increase sensitivity and capturing efficiency of the rare cells, exploiting multivalent effects will be useful since the effect has been observed to result in an exponential increase of binding avidity. Controlled immobilization of anti-epithelial-cell-adhesion-molecule (anti-EpCAM) through polymeric nanolinkers composed of spherical poly(amidoamine) dendrimers and linear polyethylene glycol will allow control over the multivalent surface to maximize the trapping of CTCs. Furthermore, as the first step of metastasis is known to be "rolling" of the CTCs on the endothelia of blood vessels that express selectins, surfaces coated with the protein that induces the naturally occurring rolling process will promote recruitment of the targeted cells out of the flow, thereby further enhancing specificity against the cells. Hence, here the investigators propose a new design of a CTC capturing device that mimics two important biological processes: multivalent binding and cell rolling. In addition, engineered microfluidic channels will induce rotation of flow that will substantially increases the cell interactions with the functionalized capturing surfaces. Specifically, the objectives of this work will focus on: 1) design and fabrication of a biomimetic microfluidic chip to separate and capture CTCs using rolling and multivalent strong binding; 2) characterization and optimization of capturing efficiency and specificity of the microfluidic chip using tumor cell lines. The present program is unique in that it will mimic naturally occurring processes for potential diagnostic applications of late-stage cancer patients. The combined strategies of using the biomimicry and engineered microchannels will have great implications and potentially high-reward in the emerging area of rare cell detection in blood. It is hypothesized that a biomimetic microfluidic chip based on iterative rolling and stationary adhesion of CTCs will effectively detect and isolate the rare cells. Essential parameters that will determine the efficiency of CTC trapping are: 1) multivalent binding between the targeted cells and anti-EpCAM that is locally concentrated via immobilization through flexible polymeric nanolinkers and 2) maximized interaction between cells and the functionalized substrate through flow rotation caused by grooves in the channel ceiling. The research team will expand the existing education and outreach activities of the individual investigators, including a high-school internship program and a research experiences for undergraduates. The University of Illinois at Chicago (UIC) has a high proportion of women and racial minority undergraduates, as well as first-generation college students who are projected to be the backbone of the scientific progress made by U.S. in the 21st century. The research results and experimental techniques developed in this program will be integrated into classroom instruction, both at the undergraduate and graduate levels.
从血液中的0931472 HongSelective检测和分离循环肿瘤细胞(CTC)为疾病诊断和预后提供了宝贵的临床见解,因为CTC已被证明是疾病进展和生存的独立预测指标。 另外,可以使用准确的CTC数来通过监测治疗过程中肿瘤的变化来管理疾病。 然而,CTC极为罕见,在转移性癌症患者血液中,只有109个血液学细胞中的一个,有效识别和稀有细胞的分离仍然是一个巨大的挑战。 该建议的核心目的是模仿微流体芯片中的生理,细胞行为,该芯片可以以高效率和特异性分离并捕获CTC。 为了提高灵敏度和捕获稀有细胞的效率,由于观察到该效应导致结合伴随的指数增加,因此利用多价效应将是有用的。 通过由球形聚(氨基胺)树突聚合物和线性聚乙二醇组成的聚合物纳米键和线性聚乙二醇组成的聚合物纳米链剂对抗上皮细胞 - 粘附 - 分子(抗EPCAM)的受控固定化将允许对多价表面进行控制,以最大程度地捕获CTC的捕获。 此外,由于已知转移的第一步是表达选择蛋白的血管内皮上的CTC“滚动”,因此涂有蛋白质的表面涂有蛋白质,这些蛋白质会诱导自然发生的滚动过程,将促进流动靶向细胞的募集,从而进一步增强细胞的特异性。 因此,在这里,调查人员提出了一种模仿两个重要生物学过程的CTC捕获装置的新设计:多价结合和细胞滚动。 此外,工程的微流体通道将诱导流动的旋转,这将大大增加与功能化捕获表面的相互作用。 具体而言,这项工作的目标将重点放在:1)设计和制造仿生的微流体芯片,以使用滚动和多价强结合来分离并捕获CTC; 2)使用肿瘤细胞系对微流体芯片的捕获效率和特异性进行表征和优化。本计划的独特之处在于它将模仿后期癌症患者的潜在诊断应用的天然过程。 使用仿生和工程微通道的综合策略将在血液中稀有细胞检测的新兴区域具有很大的影响,并有可能高回报。 假设基于CTC的迭代滚动和固定粘附的仿生微流体芯片将有效检测并隔离稀有细胞。 确定CTC捕获效率的基本参数为:1)目标细胞和抗EPAM之间的多价结合,这些结合通过柔性聚合物纳米链固定在局部浓缩,而2)2)细胞之间的相互作用以及通过通道天花板中的Grooves引起的流动旋转来实现的底物之间的最大相互作用。 研究团队将扩大个人调查人员的现有教育和外展活动,包括高中实习计划和本科生的研究经验。 伊利诺伊大学芝加哥大学(UIC)拥有很大比例的妇女和少数族裔大学生,以及预计将成为美国21世纪科学进步的骨干的第一代大学生。 该计划中开发的研究结果和实验技术将在本科和研究生级别集成到课堂教学中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seungpyo Hong其他文献
Patterning of alternating proteins inside a microfluidic channel for enhanced tumor cell isolation
微流体通道内交替蛋白质的图案化以增强肿瘤细胞分离
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
C. Launiere;M. Gaskill;J. Myung;Seungpyo Hong;D. Eddington - 通讯作者:
D. Eddington
Nanoscale polymeric penetration enhancers in topical drug delivery
局部给药中的纳米级聚合物渗透促进剂
- DOI:
10.1039/c3py00049d - 发表时间:
2013 - 期刊:
- 影响因子:4.6
- 作者:
Yang Yang;Jason Bugno;Seungpyo Hong - 通讯作者:
Seungpyo Hong
Multifunctional Dendritic Nanocarriers: The Architecture and Applications in Targeted Drug Delivery
多功能树突状纳米载体:靶向药物输送的结构和应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ryan M. Pearson;J. Bae;Seungpyo Hong - 通讯作者:
Seungpyo Hong
Library of binding protein scaffolds (LibBP): a computational platform for selection of binding protein scaffolds
结合蛋白支架库(LibBP):用于选择结合蛋白支架的计算平台
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Seungpyo Hong;Dongsup Kim - 通讯作者:
Dongsup Kim
Hierarchical OBB-sphere tree for large-scale range data management
用于大规模范围数据管理的分层 OBB 球树
- DOI:
10.1109/icip.2013.6738173 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hoang;Seungpyo Hong;Jinwook Kim - 通讯作者:
Jinwook Kim
Seungpyo Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seungpyo Hong', 18)}}的其他基金
Collaborative Research: Integrative Adaptation of Dendrimer-peptide Conjugates for Cancer Immunotherapy
合作研究:树状聚合物-肽缀合物对癌症免疫治疗的综合适应
- 批准号:
2211932 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Biomimetic Dendrimer-Exosome Hybrid Nanoparticles for Efficient Cancer Targeting
用于有效癌症靶向的仿生树状聚合物-外泌体混合纳米颗粒
- 批准号:
1808251 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Hybrid Nanoparticles for Kinetically Controlled Cancer Targeting Using Biomimetic Cell Rolling and Multivalent Binding
利用仿生细胞滚动和多价结合用于动力学控制癌症靶向的混合纳米颗粒
- 批准号:
1741560 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Hybrid Nanoparticles for Kinetically Controlled Cancer Targeting Using Biomimetic Cell Rolling and Multivalent Binding
利用仿生细胞滚动和多价结合用于动力学控制癌症靶向的混合纳米颗粒
- 批准号:
1409161 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
邻苯醌二亚胺在催化不对称串联反应中的多功能性研究
- 批准号:22371265
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多功能酵母微纳生物机器人主动靶向治疗膀胱炎的研究
- 批准号:82302374
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多功能助剂层调控修饰对综合提升光电阴极保护材料高效长效性能的关键机制研究
- 批准号:42306224
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人诱导多功能干细胞选择性荧光探针组合的设计与合成:多色染色及多细胞器靶向染色策略
- 批准号:22377042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多功能CuFeOx纳米酶在烧伤创面治疗中的应用探索及机制研究
- 批准号:82372552
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
- 批准号:
10861531 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Improving organic electronic devices through multifunctional additives and device engineering
通过多功能添加剂和器件工程改进有机电子器件
- 批准号:
547704-2020 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a Multifunctional Rehabilitation Standing and Stepping Device for Persons with Parkinson's Disease
帕金森病患者多功能康复站立踏步器的研制
- 批准号:
10546077 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Wearable multifunctional optical device for early detection of postpartum hemorrhage
用于早期检测产后出血的可穿戴多功能光学装置
- 批准号:
10705251 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Multifunctional Porous Soft Materials for User-Friendly Skin-Interfaced Bimodal Cardiac Patches with Long-Term Biocompatibility and Antimicrobial Property
用于用户友好型皮肤界面双峰心脏贴片的多功能多孔软材料,具有长期生物相容性和抗菌特性
- 批准号:
10689824 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别: