E2CDA: Type I: Collaborative Research: Energy-efficient analog computing with emerging memory devices
E2CDA:类型 I:协作研究:使用新兴存储设备的节能模拟计算
基本信息
- 批准号:1740248
- 负责人:
- 金额:$ 32.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of this project is to develop analog computing circuits that will greatly exceed their digital counterparts in energy-efficiency, speed, and density by employing emerging nonvolatile memory devices. Though analog circuits have been around for a long time, their applications in computing have been rather limited, largely due to the lack of efficient implementations of analog weights. This impediment could be overcome now due to the rapid progress in the emerging nonvolatile memory devices, such as metal-oxide memristors, which are the focus in this project. The analog memory functionality of memristors, combined with high retention and sub-10-nm scaling prospects, might for the first time enable extremely fast and energy-efficient analog implementations of many core operations, such as vector-by-matrix multiplication, which are central to many existing and emerging future applications such as internet-of-the-things and sensor networks, robotics, and energy efficient neuromorphic systems. The results of the proposed research will be integrated into educational curriculum and will help to train material science and electrical engineering students of all levels in this exciting field.The main caveat of the considered analog circuits is their limited operation accuracy, primarily due to the noise and variability in memory devices. The mitigation of this challenge by several means will be one of the main focuses of the project, and will be addressed with highly-interconnected research effort across device, circuit, and architectural layers. At the device level, detailed electrical characterization of analog operation and ways to improve it via material engineering, optimization of electrical stress, and development of efficient tuning algorithms to cope with device variations will be explored. Guided by experimentally-verified device models, the design of several representative analog computing circuits will be optimized. Circuit modeling tools will be developed to capture rich design trade offs in area, speed, energy efficiency, and precision, calibrated on experimental results from wafer-scale integrated memristor circuits, and used for detailed comparison with state-of-the-art digital counterparts. Finally, accurate circuit models will guide exploration of circuit architectures that mitigate limitations of analog computing and assist with detailed system level simulations.
该项目的主要目标是开发模拟计算电路,这些电路将通过采用新出现的非挥发性存储器设备来大大超过其能源效率,速度和密度的数字同行。尽管模拟电路已经存在很长时间了,但它们在计算中的应用非常有限,这在很大程度上是由于缺乏有效的模拟权重实现。由于新出现的非易失性存储器设备(例如金属氧化物回忆录)的快速进步,现在可以克服这种障碍,这是该项目的重点。回忆录的模拟记忆功能,结合高保留率和低于10-nm的缩放前景,可能首次实现了许多核心操作的极快,能节能的模拟实现,例如逐马乘法,这对于许多现有的现有和出现的未来应用程序,例如Internet-Internet-the-TheSthings和Sensor网络和能源效率,这是许多现有和新兴的应用程序,且能源效率效率效率。 拟议的研究的结果将集成到教育课程中,并将有助于在这个令人兴奋的领域中培训各个层次的材料科学和电气工程专业的学生。所考虑的模拟电路的主要警告是它们的操作准确性有限,主要是由于内存设备的噪声和可变性。通过几种方式缓解这一挑战将是该项目的主要重点之一,并将通过设备,电路和建筑层进行高度联系的研究工作来解决。在设备级别上,将探索模拟操作的详细电气表征以及通过材料工程,优化电应力以及开发有效调整算法以应对设备变化的详细电气表征。在实验验证的设备模型的指导下,将优化几个代表性模拟计算电路的设计。将开发电路建模工具,以捕获在晶圆尺度集成的备忘录电路的实验结果上校准的领域,速度,能效和精确度的丰富设计交易折扣,并用于与最先进的数字对应物进行详细比较。最后,准确的电路模型将指导探索电路架构,以减轻模拟计算的限制并帮助进行详细的系统级模拟。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial neural networks based on memristive devices
- DOI:10.1007/s11432-018-9425-1
- 发表时间:2018-06-01
- 期刊:
- 影响因子:8.8
- 作者:Ravichandran, Vignesh;Li, Can;Xia, Qiangfei
- 通讯作者:Xia, Qiangfei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiangfei Xia其他文献
Alkylsiloxane self-assembled monolayer formation guided by nanoimprinted Si and SiO2 templates
纳米压印 Si 和 SiO2 模板引导烷基硅氧烷自组装单层形成
- DOI:
10.1063/1.2360920 - 发表时间:
2006 - 期刊:
- 影响因子:4
- 作者:
A. A. Yasseri;Shashank Sharma;T. Kamins;Qiangfei Xia;S. Chou;R. Pease - 通讯作者:
R. Pease
Nanoimprint lithography enables memristor crossbars and hybrid circuits
纳米压印光刻技术实现忆阻器交叉开关和混合电路
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Qiangfei Xia;Wei Wu;G. Jung;Shuang Pi;Peng Lin;Yong Chen;Xuema Li;Zhiyong Li;Shih;R. S. Williams - 通讯作者:
R. S. Williams
Learning with Resistive Switching Neural Networks
使用电阻开关神经网络学习
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mingyi Rao;Qiangfei Xia;J. Yang;Zhongrui Wang;Can Li;Hao Jiang;Rivu Midya;Peng Lin;Daniel Belkin;Wenhao Song;Shiva Asapu - 通讯作者:
Shiva Asapu
The secret order of disorder
混乱的秘密秩序
- DOI:
10.1038/s41563-021-01110-3 - 发表时间:
2021 - 期刊:
- 影响因子:41.2
- 作者:
Qiangfei Xia;J. Yang;Rivu Midya - 通讯作者:
Rivu Midya
In-Memory Computing with Memristor Arrays
使用忆阻器阵列进行内存计算
- DOI:
10.1109/imw.2018.8388838 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Can Li;Daniel Belkin;Yunning Li;Peng Yan;Miao Hu;Ning Ge;Hao Jiang;Eric Montgomery;Peng Lin;Zhonguir Wang;J. Strachan;Mark D. Barnell;Qing Wu;R. S. Williams;J. Yang;Qiangfei Xia - 通讯作者:
Qiangfei Xia
Qiangfei Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiangfei Xia', 18)}}的其他基金
NSF-AoF: FET: Small: Ubiquitous in-sensor computing for adaptive intelligent systems
NSF-AoF:FET:小型:适用于自适应智能系统的无处不在的传感器内计算
- 批准号:
2133475 - 财政年份:2021
- 资助金额:
$ 32.1万 - 项目类别:
Standard Grant
Collaborative Research: ASCENT: 3D memristor convolutional kernels with diffusive memristor based reservoir for real-time machine learning
合作研究:ASCENT:3D 忆阻器卷积核,具有基于扩散忆阻器的存储库,用于实时机器学习
- 批准号:
2023752 - 财政年份:2020
- 资助金额:
$ 32.1万 - 项目类别:
Standard Grant
CAREER: Scaling of Memristive Nanodevices and Arrays
职业:忆阻纳米器件和阵列的扩展
- 批准号:
1253073 - 财政年份:2013
- 资助金额:
$ 32.1万 - 项目类别:
Standard Grant
相似国自然基金
不同类型社会网络关系对员工工作意义感和创造力的影响研究
- 批准号:72302112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
束长蝽科二个同域分布物种的种内多类型线粒体基因重排类型、地理格局及其演化方式研究
- 批准号:32300369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
受激拉曼散射成像方法用于细胞类型特异的肿瘤代谢研究
- 批准号:22377016
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于脑启发的多种类型神经可塑性协同学习机制研究
- 批准号:62306114
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
E2CDA: Type II: Collaborative Research: Metal-insulator transitions for low power switching devices
E2CDA:类型 II:协作研究:低功率开关器件的金属绝缘体转换
- 批准号:
1740213 - 财政年份:2017
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Interconnects Beyond Cu
E2CDA:I 类:协作研究:铜以外的互连
- 批准号:
1740228 - 财政年份:2017
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Nanophotonic Neuromorphic Computing
E2CDA:I 型:协作研究:纳米光子神经形态计算
- 批准号:
1740262 - 财政年份:2017
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant
E2CDA: Type II: Collaborative Research: Metal-insulator transitions for low power switching devices
E2CDA:类型 II:协作研究:低功率开关器件的金属绝缘体转换
- 批准号:
1740119 - 财政年份:2017
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Nanophotonic Neuromorphic Computing
E2CDA:I 型:协作研究:纳米光子神经形态计算
- 批准号:
1740235 - 财政年份:2017
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant