Collaborative Research: NSCI: SI2-SSE: Time Stepping and Exchange-Correlation Modules for Massively Parallel Real-Time Time-Dependent DFT
合作研究:NSCI:SI2-SSE:大规模并行实时瞬态 DFT 的时间步进和交换相关模块
基本信息
- 批准号:1740204
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in high-performance (HPC) computing allow simulations of quantum dynamics of electrons in complex materials, and such simulations are central to advancing various medical and semiconductor technologies, ranging from proton beam cancer therapy to fabricating faster and smaller electronics. At the same time, the increasing scale and complexity of modern high-performance computers exposed a need for development of scientific software that is tailored for computers with large numbers of processors so that simulations can efficiently take advantage of increasing computing power. This project advances scientific software for simulating quantum dynamics of electrons for high-performance computers with tens and hundreds of thousands of processors that are becoming widely available. This work builds the HPC academic research community around the proposed software by extending the existing software available for quantum dynamics simulation with better user-friendly features and analysis techniques. In the process, this project engages graduate students and early-career researchers to use and further develop scientific software for high-performance computers in general. Additionally, a summer school for hands-on training will be conducted. The open source software will be made available to the community on Github (public repository). Real-time propagation in time-dependent density functional theory (RT-TDDFT) is becoming increasingly popular for studying non-equilibrium electronic dynamics both in the linear regime and beyond linear response. RT-TDDFT can be combined to study coupled dynamics of quantum-mechanical electrons with the movement of classical ions within Ehrenfest dynamics. In spite of its great promise, RT-TDDFT is computationally very demanding, especially for studying large condensed-matter systems. The large cost arises from small time steps of numerical integration of the electron dynamics, rendering accurate (hybrid) exchange-correlation (XC) functionals unfeasible, despite their clear benefits. In addition, while modern high-performance computing (HPC) helps tackling great scientific questions, massively parallel, hybrid-paradigm architectures present new challenges. Theoretical and algorithmic methods need to be developed in order to take full advantage of modern massively parallel HPC. This work builds new modules for the RT-TDDFT software component of the Qb@ll code, that enables a large community of researchers to perform advanced first-principles simulations of non-equilibrium electron dynamics in complex condensed-phase systems, using massively parallel HPC. This is done through developing (1) new modules for numerical integration that propagate the underlying non-linear partial differential equations in real time with high efficiency and accuracy, and (2) new modules for improved approximations of the underlying electronic structure, using a modern meta-generalized-gradient XC functional. Furthermore, the work builds the HPC academic research community around RT-TDDFT within the Qb@ll code through (1) development of user-friendly features that interface Qb@ll with other code and analysis techniques and (2) engagement of early-career scientists by incorporating hands-on training on RT-TDDFT using the Qb@ll code in TDDFT summer school.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer and Information Science and Engineering, the Materials Research Division and Chemistry Division in the Directorate of Mathematical and Physical Sciences.
高性能(HPC)计算的最新进展允许模拟复杂材料中电子的量子动力学,并且此类模拟对于推进各种医疗和半导体技术的核心,从质子束癌症治疗到制造更快,较小的电子设备。同时,现代高性能计算机的规模和复杂性的日益扩展和复杂性暴露了开发科学软件的需求,该软件是针对具有大量处理器的计算机量身定制的,因此模拟可以有效利用增加计算能力的优势。该项目推进了科学软件,用于模拟具有数十万种处理器的高性能计算机的电子动力学,这些计算机已广泛可用。这项工作通过扩展可用于用户友好型功能和分析技术的量子动力学模拟的现有软件来建立HPC学术研究界。在此过程中,该项目与研究生和早期研究人员一起使用并进一步开发一般的高性能计算机科学软件。此外,还将进行一所暑期培训。开源软件将在GitHub(公共存储库)上提供给社区。时间依赖性密度功能理论(RT-TDDFT)的实时传播在研究线性态度和超越线性响应中的非平衡电子动力学方面变得越来越流行。可以将RT-TDDFT合并,以研究量子力学电子的耦合动力学,并在Ehrenfest动力学中的经典离子运动。尽管有巨大的希望,RT-TDDFT在计算上非常苛刻,尤其是用于研究大型凝结系统的系统。较高的成本来自电子动力学数值集成的小时步,尽管具有明显的好处,但仍使准确的(混合)交换相关(XC)功能不可行。此外,尽管现代高性能计算(HPC)有助于解决巨大的科学问题,但大规模平行的混合范式体系结构带来了新的挑战。为了充分利用现代平行的HPC,需要开发理论和算法方法。这项工作为QB@ll代码的RT-TDDFT软件组件构建了新模块,这使大量的研究人员能够使用大量并行HPC对复杂的冷凝阶段系统中的非平衡电子动力学进行高级第一原理模拟。这是通过开发(1)用于数值集成的新模块来实现的,该模块以高效率和准确性实时实时传播非线性偏微分方程,以及(2)使用现代化的元元化元素梯度XC XC功能的新模块,以改善基础电子结构的近似值。此外,这项工作还通过(1)开发QB@ll代码中的RT-TDDFT围绕RT-TDDFT建立了HPC学术研究界计算机和信息科学与工程局的网络基础设施,材料研究部和化学部数学和物理科学局。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First-Principles Modeling of Electronic Stopping in Complex Matter under Ion Irradiation
离子辐照下复杂物质电子停止的第一性原理建模
- DOI:10.1021/acs.jpclett.9b02975
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yost, Dillon C.;Yao, Yi;Kanai, Yosuke
- 通讯作者:Kanai, Yosuke
Dynamical transition orbitals: A particle–hole description in real-time TDDFT dynamics
动态跃迁轨道:实时 TDDFT 动力学中的粒子空穴描述
- DOI:10.1063/5.0035435
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhou, Ruiyi;Kanai, Yosuke
- 通讯作者:Kanai, Yosuke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yosuke Kanai其他文献
Ion-Type Dependence of DNA Electronic Excitation in Water under Proton, α-Particle, and Carbon Ion Irradiation: A First-Principles Simulation Study.
质子、α 粒子和碳离子辐照下水中 DNA 电子激发的离子类型依赖性:第一性原理模拟研究。
- DOI:
10.1021/acs.jpcb.3c05446 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chris Shepard;Yosuke Kanai - 通讯作者:
Yosuke Kanai
Coordination of copper within a crystalline carbon nitride and its catalytic reduction of CO2.
铜在结晶氮化碳中的配位及其对二氧化碳的催化还原。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4
- 作者:
Magnus Pauly;Ethan White;Mawuli Deegbey;Emmanuel Adu Fosu;Landon Keller;Scott McGuigan;Golnaz Dianat;Eric A. Gabilondo;Jian Cheng Wong;Corban G. E. Murphey;Bo Shang;Hailiang Wang;J. Cahoon;Renato Sampaio;Yosuke Kanai;Gregory N. Parsons;E. Jakubikova;Paul A. Maggard - 通讯作者:
Paul A. Maggard
All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals
用于具有数字原子中心轨道的分子中性激发的全电子从头 Bethe-Salpeter 方程方法
- DOI:
10.1063/1.5123290 - 发表时间:
2020 - 期刊:
- 影响因子:4.4
- 作者:
Chi Liu;Jan Kloppenburg;Yi Yao;Xinguo Ren;Heiko Appel;Yosuke Kanai;Volker Blum - 通讯作者:
Volker Blum
Dependence of hot electron transfer on surface coverage and adsorbate species at semiconductor-molecule interfaces.
热电子转移对半导体分子界面表面覆盖度和吸附物质的依赖性。
- DOI:
10.1039/c7cp07247c - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lesheng Li;Yosuke Kanai - 通讯作者:
Yosuke Kanai
Catalytic CO 2 Reduction Using an Atomically Precise, Cu-Coordinated, Crystalline Carbon Nitride
使用原子级精确的 Cu 配位结晶氮化碳催化 CO 2 还原
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Magnus Pauly;Mawuli Deegbey;Landon Keller;Scott McGuigan;Golnaz Dianat;Jian Cheng Wong;Corban G. E. Murphey;Bo Shang;Hailiang Wang;J. Cahoon;Renato Sampaio;Yosuke Kanai;Gregory N. Parsons;E. Jakubikova;Paul A. Maggard - 通讯作者:
Paul A. Maggard
Yosuke Kanai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yosuke Kanai', 18)}}的其他基金
Collaborative Research: DMREF: Hybrid Materials for Superfluorescent Quantum Emitters
合作研究:DMREF:超荧光量子发射器的混合材料
- 批准号:
2323804 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Elements: GPU-accelerated First-Principles Simulation of Exciton Dynamics in Complex Systems
合作研究:要素:复杂系统中激子动力学的 GPU 加速第一性原理模拟
- 批准号:
2209858 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
First-Principles Simulation of Quantized Charge Transport in Extended Systems
扩展系统中量子化电荷传输的第一性原理模拟
- 批准号:
1954894 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
First-Principles Simulation of Electronic Excitation Dynamics in Water and DNA under Proton Irradiation
质子辐照下水和 DNA 中电子激发动力学的第一性原理模拟
- 批准号:
1565714 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
2219975 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: NSCI : Computational and data innovation implementing a national community hydrologic modeling framework for scientific discovery
合作研究:框架:软件:NSCI:计算和数据创新实施国家社区水文建模框架以促进科学发现
- 批准号:
2054506 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSCI Framework: Software: SCALE-MS - Scalable Adaptive Large Ensembles of Molecular Simulations
合作研究:NSCI 框架:软件:SCALE-MS - 可扩展自适应大型分子模拟集成
- 批准号:
1835720 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Software: NSCI: Chrono-An open-source simulation platform for computational dynamics problems
合作研究:要素:软件:NSCI:Chrono-计算动力学问题的开源仿真平台
- 批准号:
1835727 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSCI Framework: Software: SCALE-MS - Scalable Adaptive Large Ensembles of Molecular Simulations
合作研究:NSCI 框架:软件:SCALE-MS - 可扩展自适应大型分子模拟集成
- 批准号:
1835607 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant