ATD: Collaborative Research: Algorithms and Data for High-Frequency, Real-Time Anomaly Detection

ATD:协作研究:用于高频、实时异常检测的算法和数据

基本信息

  • 批准号:
    1737987
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The rapidly burgeoning amount of digital data from Internet and mobile-enabled communications can offer low-cost and high-resolution views into human behavior across areas such as health and socio-economics. Personally-generated data from Internet and mobile-connected sources offer unique insight, capturing aspects of human behavior that would be taxing or impossible to quantify through other data sources. Moreover, the data is often available in real time and can be linked to specific locations. This research project addresses the statistical challenges inherent in using such unstructured spatio-temporal data sets for detection of anomalous events.Such data requires new statistical approaches to pre-process and extract forms from the data that can reliably be used for event detection. Further, the continuous nature of the data means that what constitutes anomalous behavior depends on the time-scale and on the type of underlying event. This project aims to develop 1) approaches for generating relevant features from social media data that account for the observational nature of the data and can be used in spatio-temporal models of real-world behavior and 2) a new multi-scale approach to modeling dependence structures that uses new information to continuously refine the model and accurately assess anomalies. The approach in this project is both suited to and harnesses the continuous and observational nature of social media data. The research will be validated on empirical data sets, demonstrating practical utility. It is anticipated that the results will be applicable to further the use of publicly-available geospatial data sources and understand human dynamics that are not measurable through other means.
来自互联网和支持移动设备的通信的数字数据迅速增加,可以为跨健康和社会经济等领域提供低成本和高分辨率的观点。来自Internet的个人生成数据和与移动连接的来源提供了独特的见解,捕获了人类行为的各个方面,这些方面将征税或无法通过其他数据源进行量化。此外,数据通常可以实时可用,可以链接到特定位置。该研究项目解决了使用此类非结构化时空数据集用于检测异常事件的统计挑战。使用的数据需要新的统计方法来预处理并从可靠地使用的数据中提取表格,以用于事件检测。此外,数据的连续性质意味着构成异常行为的方法取决于时间尺度和基础事件的类型。该项目的目的是开发1)方法,以从社交媒体数据中生成相关功能,这些方法解释了数据的观察性质,并且可以用于现实世界行为的时空模型中,以及2)一种新的多尺度方法,用于建模依赖性结构,该方法使用新信息来使用新的信息来连续完善模型并准确评估模型。该项目中的方法既适合和利用社交媒体数据的持续和观察性质。该研究将在经验数据集上进行验证,以证明实用性。预计结果将适用于进一步使用公共可用地理空间数据源,并了解无法通过其他方式来衡量的人类动态。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Landscape Features for Improving Vector-borne Disease Prediction
  • DOI:
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Rehman;U. Saif;R. Chunara
  • 通讯作者:
    N. Rehman;U. Saif;R. Chunara
Tracking health seeking behavior during an Ebola outbreak via mobile phones and SMS
  • DOI:
    10.1038/s41746-018-0055-z
  • 发表时间:
    2018-10-02
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
    Feng, Shuo;Grepin, Karen A.;Chunara, Rumi
  • 通讯作者:
    Chunara, Rumi
Creating Full Individual-level Location Timelines from Sparse Social Media Data
New data paradigms: From the crowd and back
新的数据范式:从人群中来来去去
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rumi Chunara其他文献

The Association Between Continuity Of Care And Medication Adherence Among Heart Failure Patients
  • DOI:
    10.1016/j.cardfail.2023.10.050
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carine E. Hamo;Amrita Mukhopadhyay;Xiyue Li;Yaguang Zheng;Ian Kronish;Rumi Chunara;John Dodson;Samrachana Adhikari;Saul Blecker
  • 通讯作者:
    Saul Blecker
基于百度搜索数据的中国流感疫情监测
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Elaine O. Nsoesie;吕本富;彭赓;Rumi Chunara
  • 通讯作者:
    Rumi Chunara
NEIGHBORHOOD-LEVEL SOCIOECONOMIC STATUS AND PRESCRIPTION FILL PATTERNS FOR GUIDELINE DIRECTED MEDICAL THERAPY AMONG PATIENTS WITH HEART FAILURE
  • DOI:
    10.1016/s0735-1097(23)00719-2
  • 发表时间:
    2023-03-07
  • 期刊:
  • 影响因子:
  • 作者:
    Amrita Mukhopadhyay;Saul Blecker;Xiyue Li;Ian Matthew Kronish;John A. Dodson;Steven Lawrence;Yaugang Zheng;Sam Kozloff;Rumi Chunara;Samrachana Adhikari
  • 通讯作者:
    Samrachana Adhikari

Rumi Chunara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rumi Chunara', 18)}}的其他基金

CAREER: Learning from When, Where and by Whom Data is Generated for Advancing Public Health Studies
职业:向何时、何地以及由谁生成数据学习以推进公共卫生研究
  • 批准号:
    1845487
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Combining Community and Clinical Data for Augmenting Influenza Modeling
EAGER:合作研究:结合社区和临床数据增强流感模型
  • 批准号:
    1643576
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SCH: EXP: Smart integration of community crowdsourced data for real-time individualized disease risk assessment
SCH:EXP:智能整合社区众包数据,进行实时个体化疾病风险评估
  • 批准号:
    1551036
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SCH: EXP: Smart integration of community crowdsourced data for real-time individualized disease risk assessment
SCH:EXP:智能整合社区众包数据,进行实时个体化疾病风险评估
  • 批准号:
    1343968
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了