Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics: experiment and simulation

合作研究:薄膜限制氧化还原磁流体动力学主动可控微流体:实验和模拟

基本信息

  • 批准号:
    1336853
  • 负责人:
  • 金额:
    $ 18.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Fritch/Isaac1336853/1336722Selective activation of redox-polymer-modified electrodes in a small volume in magnetic fields will be investigated to control microfluidics spatially and temporally. This new form of magnetohydrodynamics (MHD), as opposed to adding redox species to the solution or not adding them at all, defeats problems that hinder MHD from use in lab-on-a-chip (LOAC) devices. It allows higher currents with lower voltages, and thus, higher MHD forces and faster velocities without bubble formation or corrosion, faster response times, and compatibility with detectors and samples. MHD offers greater versatility over other micropumps, because flow can be programmed without redesigning channels of a device. An interdisciplinary, preexisting collaboration of investigators in Chemistry & Biochemistry at the Univ. of Arkansas and in Mechanical & Aerospace Engineering at Missouri Univ. of Science & Technology will perform the research.Intellectual Merit :Reduction/oxidation of chemical species confined to polymer films on electrodes creates an ionic current in solution. When at right angles to the magnetic field, the resulting MHD force causes fluid to flow there in the third dimension. Individually-addressable electrodes will be fabricated in desired patterns, polymer films will be polymerized and characterized by electrochemistry, electrodes will be activated with current and voltage in magnetic fields, and flow will be monitored by microbead movement in solution. The objectives are to (1) establish large coulombic capacity, fast response, and equivalent circuit models for redox-polymer films on electrodes, (2) control and maximize flow velocities, tune profiles, switch direction, and drive adjacent counter-flows using concentric disk-ring configurations of redox-polymer-modified electrodes perpendicular to a magnetic field, (3) sustain fluid flow by recharging redox-polymer films, and (4) use simulations to obtain spatial maps of ionic current density, MHD force density, and fluid velocities as a function of time, compare with experiment, and evaluate parameters that exceed experimental limits to better design redox-MHD microfluidic devices.Broader Impacts :The goal is to control microfluidics in a programmable way with far-reaching consequences toward products of interest to the public, such as hand-held, self-contained chemical analysis units for medical, environmental, and household uses. The interdisciplinary nature of the project enhances training of students involved in the research. Completed software modules will become available for testing and further evaluation to the scientific community free of charge. An outreach collaboration between science, math, and language arts teachers at The New School and mentors at the U of A and Missouri S&T will use MHD as a starting point to stimulate viral learning for middle school students on topics of forces and energy. Students will perform self-directed projects in collaboration with teachers and mentors, communicate results with videos using their own vocabulary and perspective, which they have scripted, edited, produced, and post them on the internet for public viewing and commentary. This approach is expected to bridge the gap between university research and middle school education, while simultaneously enhancing STEM education and educator development and increasing public scientific literacy and public engagement with science and technology.
Friitch/Isaac1336853/1336722 将研究磁场中小体积氧化还原聚合物修饰电极的选择性激活,以在空间和时间上控制微流体。与在溶液中添加氧化还原物质或根本不添加氧化还原物质不同,这种新形式的磁流体动力学 (MHD) 克服了阻碍 MHD 在芯片实验室 ​​(LOAC) 设备中使用的问题。它允许更高的电流和更低的电压,因此具有更高的 MHD 力和更快的速度,而不会形成气泡或腐蚀,响应时间更快,并且与探测器和样品兼容。与其他微型泵相比,MHD 具有更大的多功能性,因为可以对流量进行编程,而无需重新设计设备的通道。大学化学与生物化学研究人员之间的跨学科、预先存在的合作。阿肯色州大学和密苏里大学机械与航空航天工程专业。科学技术部将进行这项研究。智力成果:限制在电极上聚合物膜中的化学物质的还原/氧化在溶液中产生离子电流。当与磁场成直角时,产生的 MHD 力会导致流体在三维空间中流动。单独寻址的电极将被制造成所需的图案,聚合物薄膜将被聚合并通过电化学表征,电极将被磁场中的电流和电压激活,并且流量将通过微珠在溶液中的运动来监测。目标是 (1) 为电极上的氧化还原聚合物薄膜建立大库仑容量、快速响应和等效电路模型,(2) 控制和最大化流速、调整分布、切换方向并使用同心驱动相邻逆流垂直于磁场的氧化还原聚合物修饰电极的圆盘环配置,(3) 通过对氧化还原聚合物薄膜再充电来维持流体流动,以及 (4) 使用模拟来获得离子电流密度、MHD 力密度和流体速度作为时间的函数,与实验进行比较,并评估超出实验限制的参数,以更好地设计氧化还原 MHD 微流体装置。更广泛的影响:目标是以可编程方式控制微流体,对感兴趣的产品产生深远的影响向公众提供的产品,例如用于医疗、环境和家庭用途的手持式独立化学分析装置。该项目的跨学科性质加强了对参与研究的学生的培训。完成的软件模块将免费提供给科学界进行测试和进一步评估。 新学校的科学、数学和语言艺术教师与阿尔伯塔大学和密苏里科技大学的导师之间的外展合作将以 MHD 作为起点,激发中学生关于力和能量主题的病毒式学习。学生将与教师和导师合作执行自主项目,使用自己的词汇和观点通过视频传达结果,这些视频是他们编写、编辑、制作的,并将其发布在互联网上供公众观看和评论。这种方法有望弥合大学研究和中学教育之间的差距,同时加强 STEM 教育和教育者发展,提高公众科学素养和公众对科学技术的参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ingrid Fritsch其他文献

Fabrication and characterization of sputtered-carbon microelectrode arrays.
溅射碳微电极阵列的制造和表征。
  • DOI:
    10.1021/ac9508816
  • 发表时间:
    1996-06-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    G. Sreenivas;Simon S. Ang;Ingrid Fritsch;William D. Brown;and Greg A. Gerhardt;Donald J. Woodward
  • 通讯作者:
    Donald J. Woodward

Ingrid Fritsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ingrid Fritsch', 18)}}的其他基金

Small-Scale, Loop-Based Chemical Separations and In-line Sampling Employing Magnetoelectrochemical Methods
采用磁电化学方法的小规模、基于环路的化学分离和在线采样
  • 批准号:
    1808286
  • 财政年份:
    2018
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Continuing Grant
Redox Magnetoconvection of Solution in Small-Scale Electrochemical Systems
小型电化学系统中溶液的氧化还原磁对流
  • 批准号:
    0719097
  • 财政年份:
    2007
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Standard Grant
Electrochemistry in Ultrasmall Volumes and Magnetohydrodynamic Microfluidics
超小体积电化学和磁流体动力学微流体
  • 批准号:
    0096780
  • 财政年份:
    2001
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Continuing Grant
Organic Thin Films Suspended Across Microfabricated Structures
悬挂在微加工结构上的有机薄膜
  • 批准号:
    9624114
  • 财政年份:
    1996
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Standard Grant
Preparation and Characterization of Three-dimensional Submicron Structures for Multifunctional Electrochemical and Sensor Applications
用于多功能电化学和传感器应用的三维亚微米结构的制备和表征
  • 批准号:
    9308946
  • 财政年份:
    1993
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics: experiment and simulation
合作研究:薄膜限制氧化还原磁流体动力学主动可控微流体:实验和模拟
  • 批准号:
    1336722
  • 财政年份:
    2013
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Instructors to Teach Statics Actively
协作研究:使教师能够积极教授静力学
  • 批准号:
    1129341
  • 财政年份:
    2011
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Instructors to Teach Statics Actively
协作研究:使教师能够积极教授静力学
  • 批准号:
    1129525
  • 财政年份:
    2011
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Using thermocouple arrays to investigate temporal and spatial microbial colonization in actively forming hydrothermal vent deposits
合作研究:使用热电偶阵列研究活跃形成的热液喷口沉积物中微生物的时空定植
  • 批准号:
    0752469
  • 财政年份:
    2008
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Actively Managing Data Movement with Models - Taming High Performance Data Communications in Exascale Machines
协作研究:通过模型主动管理数据移动 - 驯服百亿亿次机器中的高性能数据通信
  • 批准号:
    0833039
  • 财政年份:
    2008
  • 资助金额:
    $ 18.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了