Algorithm Development, Analysis, and Application of High Order Schemes

高阶方案的算法开发、分析与应用

基本信息

  • 批准号:
    1719410
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

In this project the PI will perform research in algorithm design and analysis of high order accurate and efficient numerical methods for solving partial differential equations. These algorithms are used to solve scientific and engineering problems arising from diverse application fields such as aerospace engineering, semi-conductor device design, astrophysics, and biological problems. Even with today's fast computers, it is still essential to design efficient and reliable algorithms which can be used to obtain accurate solutions to these application problems. The broader impacts resulting from the proposed activity will be a suite of powerful computational tools, suitable for various applications mentioned above. These tools are expected to make positive contributions to computer simulations of the complicated solution structure in these applications.The algorithms the PI plans to investigate include the finite difference and finite volume weighted essentially non-oscillatory (WENO) schemes and discontinuous Galerkin finite element methods, for solving hyperbolic and other convection dominated partial differential equations (PDEs). While the emphasis of this project is on algorithm design and analysis, close attention will be paid to applications. Topics of proposed investigations will include the study on an inverse Lax-Wendroff procedure for high order numerical boundary conditions for finite difference schemes on Cartesian meshes solving problems in general geometry, Lagrangian type finite volume schemes for multi-material flows, a simple weighted essentially non-oscillatory limiter for discontinuous Galerkin methods with strong shocks, high order stable conservative methods on arbitrary point clouds, discontinuous Galerkin methods for weakly coupled hyperbolic multi-domain and network problems, efficient time-stepping techniques for discontinuous Galerkin schemes, high order accurate bound-preserving schemes and applications, bound-preserving high order discontinuous Galerkin schemes for radiative transfer equations, energy-conserving DG methods for Maxwell's equations in Drude metamaterials, efficient discontinuous Galerkin method for front propagation problems with obstacles, superconvergence analysis of discontinuous Galerkin methods and its applications, multi-scale methods based on the discontinuous Galerkin framework, and applications in areas including traffic and pedestrian flow models and aggregation, coordinated movement and cell proliferation in computational biology. Problems in applications will motivate the design of new algorithms or new features in existing algorithms; mathematics tools are used to analyze these algorithms to give guidelines for their applicability and limitations; practical considerations including parallel implementation issues are addressed to make the algorithms competitive in large scale calculations; and collaborations with engineers and other applied scientists enable the efficient application of these new algorithms or new features in existing algorithms.
在该项目中,PI将研究解决偏微分方程的高阶精确高效数值方法的算法设计和分析。这些算法用于解决航空航天工程、半导体器件设计、天体物理学和生物问题等不同应用领域产生的科学和工程问题。 即使当今的计算机速度很快,设计高效可靠的算法仍然至关重要,这些算法可用于获得这些应用问题的准确解决方案。 拟议活动产生的更广泛影响将是一套强大的计算工具,适用于上述各种应用。 这些工具预计将为这些应用中复杂解结构的计算机模拟做出积极贡献。PI计划研究的算法包括有限差分和有限体积加权本质上非振荡(WENO)方案和不连续伽辽金有限元方法,用于求解双曲型和其他对流主导的偏微分方程 (PDE)。虽然该项目的重点是算法设计和分析,但也会密切关注应用。拟议研究的主题将包括研究笛卡尔网格有限差分格式的高阶数值边界条件的逆Lax-Wendroff过程,解决一般几何中的问题,多材料流的拉格朗日型有限体积格式,简单的加权本质上非-强冲击的不连续伽辽金方法的振荡限制器,任意点云上的高阶稳定保守方法,弱耦合双曲多域和网络问题的不连续伽辽金方法,高效不连续伽辽金格式的时间步进技术、高阶精确保界方案和应用、辐射传递方程的保界高阶不连续伽辽金格式、德鲁德超材料中麦克斯韦方程组的能量守恒DG方法、前向高效不连续伽辽金方法障碍传播问题、间断伽辽金方法的超收敛分析及其应用、基于间断伽辽金的多尺度方法框架,以及计算生物学中交通和行人流模型和聚合、协调运动和细胞增殖等领域的应用。 应用中的问题将激发新算法的设计或现有算法的新功能;使用数学工具来分析这些算法,以为其适用性和局限性提供指导;解决了包括并行实现问题在内的实际考虑因素,以使算法在大规模计算中具有竞争力;与工程师和其他应用科学家的合作可以有效地应用这些新算法或现有算法中的新功能。

项目成果

期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong Stability of Explicit Runge--Kutta Time Discretizations
显式龙格的强稳定性--库塔时间离散化
High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes
三角形网格上具有新型多分辨率 WENO 限制器的高阶 Runge-Kutta 不连续 Galerkin 方法
  • DOI:
    10.1016/j.apnum.2020.03.013
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhu, Jun;Shu, Chi;Qiu, Jianxian
  • 通讯作者:
    Qiu, Jianxian
On New Strategies to Control the Accuracy of WENO Algorithm Close to Discontinuities II: Cell Averages and Multiresolution
控制 WENO 算法接近不连续精度的新策略 II:单元平均和多分辨率
A Discontinuous Galerkin Method for Stochastic Conservation Laws
随机守恒定律的间断伽辽金法
  • DOI:
    10.1137/19m125710x
  • 发表时间:
    2020-01-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunzhang Li;Chi;Shanjian Tang
  • 通讯作者:
    Shanjian Tang
Numerical study on the convergence to steady-state solutions of a new class of finite volume WENO schemes: triangular meshes
一类新型有限体积 WENO 格式稳态解收敛的数值研究:三角形网格
  • DOI:
    10.1007/s00193-018-0833-1
  • 发表时间:
    2018-06-18
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    J. Zhu;Chi
  • 通讯作者:
    Chi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chi-Wang Shu其他文献

Positivity-preserving Lagrangian scheme for multi-material compressible flow
多材料可压缩流保正拉格朗日格式
  • DOI:
    10.1016/j.jcp.2013.09.047
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Juan Cheng;Chi-Wang Shu
  • 通讯作者:
    Chi-Wang Shu
A Discontinuous Galerkin Method For Stochastic Conservation Laws
随机守恒定律的间断伽辽金法
  • DOI:
    10.1137/19m125710x
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunzhang Li;Chi-Wang Shu;Shanjian Tang
  • 通讯作者:
    Shanjian Tang
A high order moving boundary treatment for convection-diffusion equations
对流扩散方程的高阶移动边界处理
  • DOI:
    10.1016/j.jcp.2022.111752
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Shihao Liu;Yan Jiang;Chi-Wang Shu;Mengping Zhang;Shuhai Zhang
  • 通讯作者:
    Shuhai Zhang
A new class of central compact schemes with spectral-like resolution I: Linear schemes
一类具有类谱分辨率的新型中心紧凑方案 I:线性方案
  • DOI:
    10.1016/j.jcp.2013.04.014
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xuliang Liu(刘旭亮);Shuhai Zhang (张树海);Hanxin Zhang;Chi-Wang Shu
  • 通讯作者:
    Chi-Wang Shu
Stability analysis of inverse Lax–Wendroff boundary treatment of high order compact difference schemes for parabolic equations
抛物型方程高阶紧差分格式逆Lax-Wendroff边界处理的稳定性分析

Chi-Wang Shu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chi-Wang Shu', 18)}}的其他基金

High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization
高阶方案:保界、移动边界、随机效应和高效时间离散化
  • 批准号:
    2309249
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
High Order Schemes: Robustness, Efficiency, and Stochastic Effects
高阶方案:鲁棒性、效率和随机效应
  • 批准号:
    2010107
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
High Order Schemes for Hyperbolic and Convection-dominated Problems
双曲和对流主导问题的高阶方案
  • 批准号:
    1418750
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Algorithm Design and Analysis for High Order Numerical Methods
高阶数值方法的算法设计与分析
  • 批准号:
    1112700
  • 财政年份:
    2011
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
International Conference on Advances in Scientific Computing; December 2009; Providence, RI
国际科学计算进展会议;
  • 批准号:
    0940863
  • 财政年份:
    2009
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SCREMS: High order numerical algorithms and their applications
SCEMS:高阶数值算法及其应用
  • 批准号:
    0922803
  • 财政年份:
    2009
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Efficient High Order Numerical Methods for Convection Dominated Partial Differential
对流主导偏微分的高效高阶数值方法
  • 批准号:
    0809086
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: High Order Accurate Weighted Essentially Non-Oscillatory Algorithms with Applications to Cosmological Hydrodynamic Simulations
合作研究:高阶精确加权本质非振荡算法及其在宇宙流体动力学模拟中的应用
  • 批准号:
    0506734
  • 财政年份:
    2005
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
High Order Numerical Methods for Wave Phenomena in Adaptive, Multiscale and Uncertain Environments
自适应、多尺度和不确定环境中波动现象的高阶数值方法
  • 批准号:
    0510345
  • 财政年份:
    2005
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
High Order Methods for Linear and Nonlinear Waves
线性和非线性波的高阶方法
  • 批准号:
    0207451
  • 财政年份:
    2002
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

耦合度量发展方程的映射流及其爆破分析
  • 批准号:
    12371061
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
  • 批准号:
    72373155
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
发展成像与组分一体化分析探针实现淀粉样变心肌病的精准分型
  • 批准号:
    22374148
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
区域协调发展与结构转型:基于空间经济模型的政策机制分析与效应量化
  • 批准号:
    72373124
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
城市发展监测中市民诉求的智能化动态感知技术及分析评价体系研究
  • 批准号:
    52308082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Vessel Identification and Tracing in DSA Image Series for Cerebrovascular Surgical Planning
用于脑血管手术计划的 DSA 图像系列中的血管识别和追踪
  • 批准号:
    10726103
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Multicomponent Modeling of High-Dimensional Multiparametric MRI Data
高维多参数 MRI 数据的多分量建模
  • 批准号:
    10861533
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
  • 批准号:
    10797460
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
  • 批准号:
    10697560
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
  • 批准号:
    10665905
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了