NSF/DMR-BSF: Multiscale-Modeling and Raman Spectroscopy to Uncover Correlated Atomic Motions in Hybrid and Halide Perovskites

NSF/DMR-BSF:多尺度建模和拉曼光谱揭示混合和卤化物钙钛矿中的相关原子运动

基本信息

  • 批准号:
    1719353
  • 负责人:
  • 金额:
    $ 39.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe National Science Foundation and the United States -- Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Division of Materials Research funds this award, which supports research and education on how materials absorb light, how electrons behave after absorbing that energy, and how ionic motions can influence them. Many important processes involve interactions of light with matter, including solar energy conversion, light detection, and optical computing. This project brings together theoretical and experimental efforts to explore these processes using state-of-the-art investigational techniques. The PI and his group plan to focus on hybrid perovskites, materials that have recently been shown to have promising photovoltaic properties. Despite this promise, the lack of physical understanding of the ability of these materials to convert light to electricity impedes further progress. The theoretical work includes quantum mechanical modeling of materials and simulations, aiming to provide a deep understanding of the electronic states in these materials, as well as an understanding of the vibrational properties. The experimental work will center around using light to excite vibrational motions, revealing how the ions move, and how the ionic motions are affected by temperature, electric field, and previous light excitation. These spectroscopic studies of the vibrations will be connected to the theory and modeling to produce a complete picture of the behavior of these materials. The advancement of highly efficient photovoltaics that are easy to fabricate is a compelling societal need. The hybrid perovskites appear to be moving toward commercial acceptance, except that the basic physics behind their favorable properties and their evolution and degradation are not understood. This project represents an opportunity for theoretical condensed matter physics to play a vital role in assessing material properties and in opening the gateway to widespread acceptance of this technology. This could provide a wide range of societal dividends from improved and less expensive photovoltaics to sensors and optical computing elements.This project also offers unique opportunities for engaging and training the next generation of scientists to apply complex condensed-matter physics in a context of compelling interest to them, through venues ranging from public lectures, in-class discussions and tailored modules, to research projects at the undergraduate, graduate, and postdoctoral levels, and binational and international conferences. The US-based graduate students will travel to Israel to carry out research at the Israeli PI's group.TECHNICAL SUMMARY The National Science Foundation and the United States -- Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Division of Materials Research funds this award, which supports research and education on uncovering and understanding the correlated ionic motions in halide (and hybrid organic-inorganic) perovskite (HOIP) materials. This class of materials has shown enormous potential as next-generation photovoltaic materials. Despite this promise, the lack of physical understanding of the ability of these materials to convert light to electricity impedes further progress. Ionic motion plays a key role in the property evolution of these materials, and it has been proposed to play a signature role in the anomalously favorable excited-carrier dynamics and lifetime.The PIs propose theoretical modeling and targeted Raman spectroscopy to reveal and rationalize a range of ionic motions, including harmonic and anharmonic phonons, incipient polar order, and other correlated ionic motions on various length- and time-scales. First-principles calculations will provide insight into interatomic interactions and short-time dynamical features. Longer time scales will be accessed via molecular dynamics and will be analyzed with a suite of correlation function tools. Raman spectroscopy will probe ionic motions and confirm and extend theoretical interpretations. Specific activities include: i) revealing and analyzing correlated ionic motions and the onset of polar order in the hybrid and halide perovskites; ii) the effect of temperature and electric field on dynamic and static ordering; iii) hydrogen bonding and structural ordering; iv) illumination-induced structural ordering and disordering; v) polar ordering and the Rashba effect.The advancement of highly efficient photovoltaics that are easy to fabricate is a compelling societal need. The hybrid perovskites appear to be moving toward commercial acceptance, except that the basic physics behind their favorable properties and their evolution and degradation are not understood. This project represents an opportunity for theoretical condensed matter physics to play a vital role in assessing material properties and opening the gateway to widespread acceptance of this technology. This project will make connections between disparate scientific disciplines including crystalline solids, liquids, and molecular materials, and will develop new techniques for Raman spectroscopic interrogation of materials and correlation function theoretical analysis of complex ionic behaviors.This project also offers unique opportunities for engaging and training the next generation of scientists to apply complex condensed-matter physics in a context of compelling interest to them, through venues ranging from public lectures, in-class discussions and tailored modules, to research projects at the undergraduate, graduate, and postdoctoral levels, and binational and international conferences. The US-based graduate students will travel to Israel to carry out research at the Israeli PI's group.
非技术摘要美国国家科学基金会和美国-以色列两国科学基金会 (BSF) 共同支持美国研究人员和以色列研究人员之间的合作。美国国家科学基金会材料研究部资助该奖项,支持有关材料如何吸收光、电子在吸收能量后如何表现以及离子运动如何影响它们的研究和教育。许多重要过程都涉及光与物质的相互作用,包括太阳能转换、光检测和光学计算。该项目汇集了理论和实验工作,利用最先进的研究技术探索这些过程。该 PI 和他的团队计划重点研究混合钙钛矿,这种材料最近被证明具有良好的光伏特性。尽管有这样的希望,但对这些材料将光转化为电的能力缺乏物理理解阻碍了进一步的进展。理论工作包括材料的量子力学建模和模拟,旨在深入了解这些材料中的电子态以及振动特性。实验工作将围绕使用光激发振动运动,揭示离子如何移动,以及离子运动如何受到温度、电场和先前光激发的影响。这些振动的光谱研究将与理论和建模相结合,以生成这些材料行为的完整图像。发展易于制造的高效光伏发电是迫切的社会需求。杂化钙钛矿似乎正在走向商业接受,但其有利特性及其演化和降解背后的基本物理原理尚不清楚。该项目为理论凝聚态物理学提供了一个机会,可以在评估材料特性和打开广泛接受该技术的大门方面发挥重要作用。这可以提供广泛的社会红利,从改进且更便宜的光伏到传感器和光学计算元件。该项目还为吸引和培训下一代科学家在令人感兴趣的背景下应用复杂的凝聚态物理提供了独特的机会通过公开讲座、课堂讨论和定制模块,到本科生、研究生和博士后级别的研究项目以及两国和国际会议等场所,向他们提供帮助。美国的研究生将前往以色列,在以色列 PI 小组中开展研究。 技术摘要 美国国家科学基金会和美国-以色列两国科学基金会 (BSF) 共同支持美国研究人员和以色列科学家之间的合作以色列研究员。美国国家科学基金会材料研究部资助该奖项,支持揭示和理解卤化物(和有机-无机杂化)钙钛矿(HOIP)材料中相关离子运动的研究和教育。这类材料已显示出作为下一代光伏材料的巨大潜力。尽管有这样的希望,但对这些材料将光转化为电的能力缺乏物理理解阻碍了进一步的进展。离子运动在这些材料的性质演化中发挥着关键作用,并且已被认为在异常有利的激发载流子动力学和寿命中发挥着标志性作用。PI 提出了理论建模和目标拉曼光谱来揭示和合理化一系列范围离子运动的研究,包括谐波和非谐波声子、初始极序以及各种长度和时间尺度上的其他相关离子运动。第一原理计算将提供对原子间相互作用和短时动力学特征的深入了解。更长的时间尺度将通过分子动力学获得,并使用一套相关函数工具进行分析。拉曼光谱将探测离子运动并确认和扩展理论解释。具体活动包括:i)揭示和分析杂化物和卤化物钙钛矿中相关的离子运动和极性顺序的开始; ii) 温度和电场对动态和静态排序的影响; iii) 氢键和结构排序; iv) 光照引起的结构有序和无序; v) 极序和拉什巴效应。易于制造的高效光伏电池的进步是迫切的社会需求。杂化钙钛矿似乎正在走向商业接受,但其有利特性及其演化和降解背后的基本物理原理尚不清楚。该项目为理论凝聚态物理学提供了一个机会,可以在评估材料特性和为广泛接受该技术打开大门方面发挥重要作用。该项目将在包括晶体固体、液体和分子材料在内的不同科学学科之间建立联系,并将开发材料拉曼光谱分析和复杂离子行为相关函数理论分析的新技术。该项目还提供独特的参与和培训机会下一代科学家通过公开讲座、课堂讨论和定制模块,以及本科生、研究生和博士后的研究项目,在他们感兴趣的背景下应用复杂的凝聚态物理级别以及两国和国际会议。美国研究生将前往以色列,在以色列 PI 小组进行研究。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice
混合搭配:钙钛矿晶格中的有机和无机离子
  • DOI:
    10.1002/adma.201802697
  • 发表时间:
    2018-12-20
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    J. Gebhardt;A. Rappe
  • 通讯作者:
    A. Rappe
Hybrid functional pseudopotentials
混合泛函赝势
  • DOI:
    10.1103/physrevb.97.085130
  • 发表时间:
    2017-03-13
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jing Yang;L. Tan;A. Rappe
  • 通讯作者:
    A. Rappe
Bioferroelectric Properties of Glycine Crystals
甘氨酸晶体的生物铁电性质
  • DOI:
    10.1021/acs.jpclett.8b03837
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hu, Pengfei;Hu, Shunbo;Huang, Yundi;Reimers, Jeffrey R.;Rappe, Andrew M.;Li, Yongle;Stroppa, Alessandro;Ren, Wei
  • 通讯作者:
    Ren, Wei
Ubiquitous Short-Range Distortion of Hybrid Perovskites and Hydrogen-Bonding Role: the MAPbCl 3 Case
杂化钙钛矿普遍存在的短程畸变和氢键作用:MAPbCl 3 案例
  • DOI:
    10.1021/acs.jpcc.8b10086
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bernasconi, Andrea;Page, Katharine;Dai, Zhenbang;Tan, Liang Z.;Rappe, Andrew M.;Malavasi, Lorenzo
  • 通讯作者:
    Malavasi, Lorenzo
Epitaxial Strain Control of Relaxor Ferroelectric Phase Evolution
弛豫铁电相演化的外延应变控制
  • DOI:
    10.1002/adma.201901060
  • 发表时间:
    2019-04-10
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Jieun Kim;H. Takenaka;Y. Qi;A. Damodaran;Abel Fern;ez;ez;R. Gao;M. McCarter;S. Saremi;L. Chung;A. Rappe;L. Martin
  • 通讯作者:
    L. Martin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Rappe其他文献

Andrew Rappe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Rappe', 18)}}的其他基金

GOALI: Collaborative Research: On-Demand Continuous-Flow Production of High Performance Acrylic Resins: from Electronic-Level Modeling to Modular Process Intensification
GOALI:合作研究:高性能丙烯酸树脂的按需连续流生产:从电子级建模到模块化过程强化
  • 批准号:
    1803215
  • 财政年份:
    2018
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Project: GOALI: Acrylic Resins Product and Process Design through Combined Use of Quantum Chemical Calculations and Spectroscopic Methods
合作项目:GOALI:结合使用量子化学计算和光谱方法进行丙烯酸树脂产品和工艺设计
  • 批准号:
    1159736
  • 财政年份:
    2012
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: GOALI: Design of Chemically Self-Regulated, Acrylic Coatings Processes through Iterative Use of Chemical Quantum Calculations and Spectroscopic Methods
合作研究:GOALI:通过迭代使用化学量子计算和光谱方法设计化学自调节丙烯酸涂料工艺
  • 批准号:
    0932786
  • 财政年份:
    2009
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Studies of the Electronic, Structural, and Vibrational Properties of Molecule-Surface Systems
职业:分子表面系统的电子、结构和振动特性的理论研究
  • 批准号:
    9702514
  • 财政年份:
    1997
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

PpbHLH14-DMR6-like响应MeJA诱导增强梨炭疽病抗性的分子机制
  • 批准号:
    32302484
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
泛素连接酶DDEL1/2/3介导水杨酸羟化酶DMR6降解调控植物免疫的分子机制
  • 批准号:
    32300255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circRNA-DMR介导m6A去甲基化酶ALKBH5低表达并促进糖尿病视网膜小胶质细胞M1型极化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dlk1-Dio3印记区域内母本甲基化差异甲基化区Meg8-DMR的功能研究
  • 批准号:
    31771601
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
猪RTL1基因DMR甲基化状态对其印记状态及表达水平的调控
  • 批准号:
    31201791
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
  • 批准号:
    2026741
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)
NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)
  • 批准号:
    2015991
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Synergistic biopolymer co-assembly regulating the emergence of translation and replication in synthetic networks
NSF/DMR-BSF:协同生物聚合物共组装调节合成网络中翻译和复制的出现
  • 批准号:
    2004846
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Electronic Correlations and Disorder in Berry materials
NSF/DMR-BSF:浆果材料中的电子相关性和无序性
  • 批准号:
    2002795
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
  • 批准号:
    2000987
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了