MRI: Development of Multi-field Resonant Ultrasound Spectroscopy

MRI:多场共振超声光谱的发展

基本信息

  • 批准号:
    1726887
  • 负责人:
  • 金额:
    $ 53.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

Elastic constants are fundamental properties of any solid material and knowing their changes with temperature and/or under applied magnetic or electric field is essential for understanding different physical processes that take place in different materials. However, measurement of elastic constants using conventional techniques is not always a trivial task. It usually requires large number of samples and/or numerous time-consuming tests, especially if the measurements are performed at low and high temperatures and/or under various external stimuli such as electric and magnetic fields. Multi-field Resonant Ultrasound Spectroscopy (MF-RUS) apparatus under development in this project will allow rapid experimental determination of the full set of elastic constants of any solid from the single test using only one sample as small as 1 mm3 in the wide temperature range, with or without applied electric or magnetic fields. The broad capabilities of the MF-RUS will enable comprehensive characterization of different solids, and enhance research in many fields, including materials science and engineering, physics, and chemistry. By allowing rapid and easy evaluation of elastic properties of different materials, utilization of MF-RUS will further foster development of new materials for widely varying applications including energy harvesting, storage and conversion, defense, and transportation systems. Once developed, this unique instrument will be available to researchers from other academic institutions, industry and laboratories through a well-established Materials Characterization Facility's users program at Texas A&M University. Eighteen research projects at Texas A&M University and other academic institutions, including two minority serving institutions, currently supported by NSF and other federal agencies will benefit immediately from the development of MF-RUS.Elastic constants, as the second derivatives of the free energy with respect to strain, not only relate stress and strain tensors, but also provide fundamental information about the character of atomic bonding in solids, and thus they are considered to be one of the most fundamental materials properties. While the elastic constants represent primarily equilibrium thermodynamic properties, the attenuation is direct manifestation of irreversible processes related to energy absorption by various physical processes in the material. Resonant Ultrasound Spectroscopy (RUS) is a simple, inexpensive and elegant experimental technique that can be used to determine simultaneously Young's and shear moduli of isotropic solids, or a full set of elastic constants (Cij) of single crystals, as well as ultrasonic attenuation, using single crystal or polycrystalline sample as small as 1 mm3. Currently, commercially available RUS instruments are limited to room temperature measurements while some existing custom-made RUS systems allow measurements up to 1320ºC in controlled environments, in magnetic fields up to 7T from cryogenic temperatures to 327ºC, or under an electric field but only at room temperature. A Multi-Field Resonant Ultrasound Spectroscopy (MF-RUS) system under development in this project will be unique since it will allow simultaneous measurements of elastic constants and ultrasonic attenuation of solid materials from liquid helium temperature up to 1900ºC, with or without electric fields of up to 1000 V/mm or magnetic fields of up to 7T, and in various atmospheres (air, high vacuum, inert gases, etc.) This RUS system will be modular and will be developed in stages over the 3-year project period with partial functionality as each module is added. This instrument will provide a powerful new tool to observe and quantify changes in elastic coefficients and ultrasonic attenuation as a result of various physical processes in the solid, such as first- and second-order phase transformations or different inelastic relaxation mechanisms due to different processes such as thermoelastic relaxation and motion of point defects (e.g. interstitial and vacancy hopping), linear defects (e.g. dislocations) or planar defects (e.g. domain walls or martensitic transformation phase interfaces, etc.).
弹性常数是任何固体材料的基本特性,并且知道它们随温度和/或在应用磁场或电场下的变化对于理解不同材料中发生的不同物理过程至关重要。但是,使用常规技术测量弹性常数并不总是一项琐碎的任务。它通常需要大量的样品和/或众多耗时的测试,尤其是在低温和/或在各种外部刺激下(例如电场和磁场)下进行测量时。该项目正在开发中的多场谐振超声光谱(MF-RUS)设备将允许在单个测试中快速实验任何固体的弹性常数,仅使用一个在宽温度范围内的样品中的一个样品,具有或具有施加的电场或磁场。 MF-RUS的广泛能力将使不同的固体进行全面的特征,并在许多领域(包括材料科学和工程,物理学和化学)中增强研究。通过允许对不同材料的弹性特性的快速评估,MF-RUS的利用将进一步促进新材料的开发,用于广泛不同的应用,包括能源收集,存储和转换,防御,防御和运输系统。一旦开发,这种独特的工具将通过得克萨斯A&M大学的材料表征设施的用户计划提供给其他学术机构,行业和实验室的研究人员。德克萨斯州A&M大学和其他学术机构的18个研究项目,包括NSF和其他联邦机构的支持,包括两个少数派服务机构,将立即受益于MF-Rus.Solastic Startants的发展,作为自由能量的第二个衍生物作为应变的第二个衍生物,不仅是相关的压力和应变量,因此还为符合的材料提供了一个基础,并具有良性的既定材料,并且是既有的,又是既有的,并且是既有的,又是既定的。 特性。尽管弹性常数代表了一级平衡热力学特性,但衰减是与材料中各种物理过程相关的不可逆过程的直接表现。谐振超声光谱(RUS)是一种简单,便宜且优雅的实验技术,可用于确定简单的Young和剪切模量的各向同性固体的模量,或使用单晶或多晶型晶体或多晶型晶体样品AS Small Assy As Small Ass 1 mm3。当前,市售的RUS仪器仅限于室温测量,而某些现有的定制RUS系统则允许在受控环境中,在从低温温度到327ºC的磁场中或在电场下,仅在室温下,最多可在受控环境中进行1320ºC的测量。该项目正在开发中的多场谐振超声光谱(MF-RUS)系统将是独特的,因为它将允许对弹性常数和超声衰减进行简单测量,以及从液体氦气温度到1900ºC的固体材料的超声衰减,最多有或不带电场,最多可达1000 v/mm或最高的磁场,以及在各种大气中,以及在各种大气中,均高达各种磁场,并在各种磁场上,均可在各种大气中,均高达各种磁场。模块化,并将在3年的项目期间分阶段开发,并随着每个模块的添加部分功能。该仪器将提供一个强大的新工具,以观察和量化固体中的各种物理过程(例如一阶和二阶相变或不同的非弹性放松机制),弹性系数和超声衰减的变化,例如,由于热弹性放松和点的运动缺陷(例如,内部和空位期望)(例如,固定型)(例如)(例如,近距离删节)(例如,固定)(例如,固定)(例如,固定)(例如) (例如,域壁或马氏体变换阶段界面等)。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fabrication and characterization of aluminum - magnetic shape memory alloy composites
铝磁形状记忆合金复合材料的制备及表征
  • DOI:
    10.1016/j.msea.2020.140549
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barta, N.E.;Fincher, C.;Bolon, A.M.;Attari, V.;Higgins, W.;Arroyave, R.;Radovic, M.;Pharr, G.M.;Karaman, I.
  • 通讯作者:
    Karaman, I.
Performance of Al-Al2O3 Composites under Coupled Mechanical and Thermal Stimuli
Al-Al2O3 复合材料在机械和热耦合刺激下的性能
High-temperature dependency of elastic mechanical behavior of two wrought magnesium alloys AZ31B and ZK60A studied by resonant ultrasound spectroscopy
  • DOI:
    10.1016/j.msea.2019.04.115
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Garlea;M. Radovic;P. Liaw
  • 通讯作者:
    E. Garlea;M. Radovic;P. Liaw
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miladin Radovic其他文献

Effects of Al substitution with Si and Sn on tribological performance of Ti3AlC2
Al取代Si和Sn对Ti3AlC2摩擦学性能的影响
  • DOI:
    10.1016/j.ceramint.2020.10.214
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Leping Cai;Zhenying Huang;Wenqiang Hu;Yexiao Chen;Zeyi Tan;Miladin Radovic
  • 通讯作者:
    Miladin Radovic

Miladin Radovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miladin Radovic', 18)}}的其他基金

DMREF: Collaborative Research: Accelerated Development of Damage Tolerant and Oxidation Resistant Alumina-Forming MAX Phases
DMREF:合作研究:加速开发耐损伤和抗氧化的氧化铝形成 MAX 相
  • 批准号:
    1729350
  • 财政年份:
    2017
  • 资助金额:
    $ 53.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Deformation and Damage Mechanisms in Ternary Carbides and Nitrides under Dynamic Conditions
合作研究:动态条件下三元碳化物和氮化物的变形和损伤机制
  • 批准号:
    1233792
  • 财政年份:
    2012
  • 资助金额:
    $ 53.44万
  • 项目类别:
    Standard Grant
CAREER: Effects of Anelastic Relaxation of Defect Complexes on the Mechanical Behavior of Oxide Ceramics
职业:缺陷复合体的滞弹性弛豫对氧化物陶瓷机械行为的影响
  • 批准号:
    1057155
  • 财政年份:
    2011
  • 资助金额:
    $ 53.44万
  • 项目类别:
    Continuing Grant

相似国自然基金

TRIM15介导的Axin1多聚化调控在Wnt信号和结直肠癌发生发展中的作用及机制研究
  • 批准号:
    32370749
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数智化视域下多族群地区文化旅游产业高质量发展的机理与路径研究
  • 批准号:
    72364010
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
战略与管理研究类:综合立体交通多网融合领域学科发展战略研究
  • 批准号:
    52342202
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
新生期多胺代谢紊乱参与ARDS疾病发生发展的机制研究
  • 批准号:
    82301963
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
江苏典型乡村转型发展的动态过程与驱动机理研究:融合多尺度治理的新内生发展视角
  • 批准号:
    42371205
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 53.44万
  • 项目类别:
Hyperpolarized 129Xe MRI to identify structural determinants of low lung function and respiratory symptoms in young adults from the Lung Health Cohort
超极化 129Xe MRI 用于识别肺健康队列中年轻人低肺功能和呼吸道症状的结构决定因素
  • 批准号:
    10639640
  • 财政年份:
    2023
  • 资助金额:
    $ 53.44万
  • 项目类别:
User-friendly Analysis Platform for Decentralized Multi-site Diffusion MRI Studies
用于分散式多站点扩散 MRI 研究的用户友好分析平台
  • 批准号:
    10724720
  • 财政年份:
    2023
  • 资助金额:
    $ 53.44万
  • 项目类别:
MR Fingerprinting based Quantitative Imaging and Analysis Platform (MRF-QIA) for brain tumors.
基于 MR 指纹的脑肿瘤定量成像和分析平台 (MRF-QIA)。
  • 批准号:
    10593584
  • 财政年份:
    2023
  • 资助金额:
    $ 53.44万
  • 项目类别:
Development and Evaluation of Advanced Non-Contrast Perfusion MRI for Monitoring Treatment Response in Brain Metastases
用于监测脑转移治疗反应的先进非对比灌注 MRI 的开发和评估
  • 批准号:
    10716949
  • 财政年份:
    2023
  • 资助金额:
    $ 53.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了