DMREF: Collaborative Research: Accelerated Development of Damage Tolerant and Oxidation Resistant Alumina-Forming MAX Phases

DMREF:合作研究:加速开发耐损伤和抗氧化的氧化铝形成 MAX 相

基本信息

项目摘要

Materials capable of withstanding harsh environments have the potential to enable a wide range of important technologies. A family of ceramic carbide and nitride materials referred to as MAX phases possess unusual and often unique sets of properties that combine some of the best attributes of ceramics and metals. These are light, stiff, stable and able to resist high temperatures like typical ceramics, but also damage tolerant, ductile at high temperatures and as readily machinable as metals. In addition, some of the MAX phases form protective layers when heated in air, that are extremely resistant to thermal shock, thermal cycling and chemical attack. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports fundamental research to understand the process by which these protective layers in MAX phases are formed. This research will incorporate computational simulations and experimental synthesis and characterization to build the knowledge base for the accelerated development and design of MAX phase materials with outstanding mechanical properties for high temperature applications. Results of this project will foster application of MAX phases in power generation, energy conversion, transportation, aerospace and defense technologies. This project also provides specialized multidisciplinary training for graduate and undergraduate students on integrating materials informatics, modeling, atomistic computations and experiments in materials design.Despite two decades of experimental studies on MAX phases, designing their optimal composition and microstructure has remained a challenge mainly because of the large number of possible compositions and microstructures, and a lack of robust physical models that relate their composition and microstructure to properties. The overall goal of this research program is to overcome those challenges and foster design of MAX phases for high temperature applications by: (1) developing physics-based predictors for the formation of protective alumina layers; (2) developing micromechanical models and identifying compositional/structural parameters that control intrinsic thermomechanical properties; (3) designing Bayesian calibration protocols for parameter identification; (4) implementing and deploying Efficient Global Optimization protocols for the efficient discovery of MAX phases with optimal thermomechanical properties and; (5) validating the proposed framework through material synthesis, characterization and thermomechanical testing. This will provide guiding fundamental knowledge and protocols to design optimal compositions and microstructures of the MAX phases for high temperature application.
能够承受恶劣环境的材料有可能实现广泛的重要技术。 一个称为最大相的陶瓷碳化物和氮化物材料家族具有不寻常的,通常是独特的特性集,可将陶瓷和金属的一些最佳属性结合在一起。这些是轻巧,僵硬,稳定的,能够抵抗典型的陶瓷等高温,但在高温下也可以耐受耐受性,并且可以像金属一样容易加工。此外,在空气中加热时,一些最大相对于热休克,热循环和化学攻击具有极大的抵抗力。这种设计材料彻底改变和设计我们的未来(DMREF)奖支持基础研究,以了解形成最大阶段这些保护层的过程。这项研究将结合计算模拟以及实验合成和表征,以建立具有高温应用具有出色机械性能的最大相位材料的加速开发和设计的知识库。该项目的结果将促进最大阶段在发电,能源转换,运输,航空航天和国防技术中的应用。该项目还为研究生和本科生提供专门的多学科培训,以整合材料信息学,建模,原子计算和材料设计中的实验。尽管在最大阶段进行了二十年的实验研究,但设计其最佳组成和微观结构的挑战主要是因为大量可能的组成和微观结构,以及缺乏将其组成和微观结构与属性相关的稳健物理模型。该研究计划的总体目标是克服这些挑战,并通过以下方式克服高温应用的最大阶段的设计,并通过:(1)开发基于物理的预测因子,以形成保护性氧化铝层; (2)开发微电模型并识别控制固有的热机械特性的组成/结构参数; (3)设计贝叶斯校准方案以识别参数; (4)实施和部署有效的全局优化协议,以有效地发现具有最佳热机械特性的最大相位; (5)通过材料合成,表征和热机械测试来验证所提出的框架。这将提供指导性的知识和协议,以设计最大阶段的最佳组成和微观结构,以进行高温应用。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Autonomous efficient experiment design for materials discovery with Bayesian model averaging
  • DOI:
    10.1103/physrevmaterials.2.113803
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Talapatra;Shahin Boluki;T. Duong;Xiaoning Qian;E. Dougherty;Raymundo Arr'oyave
  • 通讯作者:
    A. Talapatra;Shahin Boluki;T. Duong;Xiaoning Qian;E. Dougherty;Raymundo Arr'oyave
Synthesis and characterization of the atomic laminate Mn2AlB2
  • DOI:
    10.1016/j.jeurceramsoc.2018.07.051
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    S. Kota;Yexiao Chen;Jiayi Wang;S. May;M. Radovic;M. Barsoum
  • 通讯作者:
    S. Kota;Yexiao Chen;Jiayi Wang;S. May;M. Radovic;M. Barsoum
On the non-classical crystallographic slip in Tin+1AlCn MAX phases
  • DOI:
    10.1016/j.scriptamat.2020.113698
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Zhiqiang Zhan;M. Radovic;Ankit Srivastava
  • 通讯作者:
    Zhiqiang Zhan;M. Radovic;Ankit Srivastava
On the complexity of solid-state diffusion in highly concentrated alloys and the sluggish diffusion core-effect
高浓度合金中固态扩散的复杂性和缓慢扩散核心效应
  • DOI:
    10.1016/j.calphad.2019.101713
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Schön, Cláudio G.;Tunes, Matheus A.;Arróyave, Raymundo;Ågren, John
  • 通讯作者:
    Ågren, John
Non-classical crystallographic slip in a ternary carbide – Ti 2 AlC
三元碳化物中的非经典晶体滑移 — Ti 2 AlC
  • DOI:
    10.1080/21663831.2020.1748733
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Zhan, Zhiqiang;Chen, Yexiao;Radovic, Miladin;Srivastava, Ankit
  • 通讯作者:
    Srivastava, Ankit
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miladin Radovic其他文献

Effects of Al substitution with Si and Sn on tribological performance of Ti3AlC2
Al取代Si和Sn对Ti3AlC2摩擦学性能的影响
  • DOI:
    10.1016/j.ceramint.2020.10.214
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Leping Cai;Zhenying Huang;Wenqiang Hu;Yexiao Chen;Zeyi Tan;Miladin Radovic
  • 通讯作者:
    Miladin Radovic

Miladin Radovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miladin Radovic', 18)}}的其他基金

MRI: Development of Multi-field Resonant Ultrasound Spectroscopy
MRI:多场共振超声光谱的发展
  • 批准号:
    1726887
  • 财政年份:
    2017
  • 资助金额:
    $ 98.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Deformation and Damage Mechanisms in Ternary Carbides and Nitrides under Dynamic Conditions
合作研究:动态条件下三元碳化物和氮化物的变形和损伤机制
  • 批准号:
    1233792
  • 财政年份:
    2012
  • 资助金额:
    $ 98.7万
  • 项目类别:
    Standard Grant
CAREER: Effects of Anelastic Relaxation of Defect Complexes on the Mechanical Behavior of Oxide Ceramics
职业:缺陷复合体的滞弹性弛豫对氧化物陶瓷机械行为的影响
  • 批准号:
    1057155
  • 财政年份:
    2011
  • 资助金额:
    $ 98.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 98.7万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 98.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 98.7万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 98.7万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 98.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了