GOALI: Visualizing and Measuring Nanoscale Properties through Multi-spectral Atomic Force Microscopy for the Design and Discovery of Novel Materials

GOALI:通过多光谱原子力显微镜可视化和测量纳米级特性,用于新型材料的设计和发现

基本信息

  • 批准号:
    1726274
  • 负责人:
  • 金额:
    $ 54.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Great advances in scientific discovery and human progress have often followed the development of new scientific tools that allow us to "see" well beyond our everyday experience. The Atomic Force Microscope (AFM) is one such tool that has revolutionized materials science by its ability to visualize a wide variety of materials under different conditions with the resolution of an atom. In the past, AFM has been used to render contrast at one frequency but these days it is possible to observe multi-spectral contrast in images at many different frequencies: in effect like an optical microscope being able to observe contrast through different filters. This research project will allow Purdue University researchers to work closely with an industrial partner, Oxford Instruments-Asylum. The team will innovate methods to convert this multi-spectral contrast to quantitative physical properties to help in the design and discovery of next-generation materials for biomedical, energy storage, and consumer products. A comprehensive theoretical and experimental research and outreach program is planned to significantly advance the state-of-the art of multi-frequency AFM through a collaboration between Purdue University, Oxford Instruments-Asylum, a leader in the multi-frequency AFM market, and KTH, Sweden. The project also involves development of new courses in polymer interactions and multi-frequency AFM for students and enhancement of Virtual Environment for Dynamic AFM capability for multi-frequency AFM operation for polymers which will greatly benefit students and other researchers. The most important multi-frequency Atomic Force Microscopy modes today can be conceptually understood as nonlinear systems with slow and fast timescale dynamics. This project will undertake analytical perturbative, continuation, and experimental approaches to analyze these problems to yield a rich harvest of predictive insight into microcantilever motions, stability, bifurcations, and chaos. On one hand, this information will help operate multi-frequency AFM's in stable regimes, while on the other hand, the insight will help guide the operating conditions most appropriate to generate contrast on a specific material. Additionally, sophisticated computational tools and experimental validation will allow an unprecedented correlation between experimental observables in multi-frequency Atomic Force Microscopy and the local properties of soft polymeric materials used in electronics, biomedical devices, and consumer products. These tools will be made available to hundreds of researchers worldwide through the software suite Virtual Environment for Dynamic Atomic Force Microscopy on the cyber-infrastructure of nano-HUB. The work is a comprehensive study of the dynamical foundations of multi-frequency AFM, a next emerging frontier in the evolution of Atomic Force Microscope towards a truly functional, quantitative nanoscale imaging technology. The findings will be transferred to industry through the close collaboration with Oxford Instruments (Asylum). While the focus of the project is on multifrequency Atomic Force Microscopy, there is a clear trend towards multiple frequency methods across many imaging technologies; for example, in contrast enhanced ultrasound, electrical impedance tomography, and microwave imaging to name a few. Thus the approaches developed in this work could not only spill over to multi-frequency imaging methods in other biomedical or materials instrumentation but could also create opportunities for multi-spectral monitoring in micro- and nano-electromechanical systems.
科学发现和人类进步方面的巨大进步经常遵循开发新的科学工具,这些工具使我们能够“看到”远远超出我们的日常经验。原子力显微镜(AFM)是一种这样的工具,它通过在不同条件下以原子的分辨率在不同条件下可视化多种材料的能力彻底改变了材料科学。过去,AFM已被用来以一种频率形成对比度,但是如今,可以在许多不同频率下观察到图像的多光谱对比:实际上,就像光学显微镜能够通过不同的过滤器观察对比度。该研究项目将使普渡大学的研究人员与工业合作伙伴牛津仪器 - 艾尔鲁姆(Oxford Instruments-Asylum)紧密合作。 该团队将创新与定量物理特性相比的这种多光谱对比的方法,以帮助设计和发现生物医学,储能和消费产品的下一代材料。计划通过普渡大学(Purdue University),牛津仪器 - 埃斯基鲁姆(Oxford Instruments-Asylum)之间的合作,多频率AFM市场的领导者和瑞典的KTH的领导者,通过合作,通过合作,通过合作来大大推动多频AFM的最先进。该项目还涉及开发聚合物相互作用的新课程和为学生提供多种频率AFM,并增强虚拟环境的动态AFM能力,以供多频AFM操作用于聚合物,这将极大地使学生和其他研究人员受益。如今,最重要的多频原子力显微镜模式可以在概念上被理解为具有缓慢和快速的时间尺度动力学的非线性系统。该项目将采用分析性扰动,延续和实验方法来分析这些问题,以产生对微抗体动作,稳定性,分叉和混乱的丰富预测性见解。一方面,此信息将有助于在稳定的方向上操作多频率AFM的AFM,而另一方面,Insight将有助于指导最合适的操作条件,以产生对特定材料的对比。此外,复杂的计算工具和实验验证将允许多频原子力显微镜中的实验性观察力与用于电气,生物医学设备和消费产品的软聚合物材料的局部特性之间存在前所未有的相关性。这些工具将通过软件套件虚拟环境为全球数百名研究人员提供,以在纳米枢纽的网络基础结构上进行动态原子力显微镜。这项工作是对多频AFM的动力基础的全面研究,这是原子力显微镜进化的下一个新兴领域,朝着真正功能性,定量的纳米级成像技术。这些发现将通过与牛津工具(庇护)的密切合作转移到行业。尽管该项目的重点是多频原子力显微镜,但在许多成像技术中有多种频率方法存在明显的趋势。例如,相比之下,增强了超声波,电阻抗断层扫描和微波成像为等。因此,这项工作中开发的方法不仅可以溢出到其他生物医学或材料仪器中的多频成像方法中,而且还可以为微光谱监测微型和纳米机电系统中的多光谱监测创造机会。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A fast first-principles approach to model atomic force microscopy on soft, adhesive, and viscoelastic surfaces
  • DOI:
    10.1088/2053-1591/ac1fb7
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Rajabifar, Bahram;Wagner, Ryan;Raman, Arvind
  • 通讯作者:
    Raman, Arvind
Nanomechanical mapping in air or vacuum using multi-harmonic signals in tapping mode atomic force microscopy
  • DOI:
    10.1088/1361-6528/ab9390
  • 发表时间:
    2020-11-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Huda Shaik, Nurul;Reifenberger, Ronald G.;Raman, Arvind
  • 通讯作者:
    Raman, Arvind
Machine Learning Approach to Characterize the Adhesive and Mechanical Properties of Soft Polymers Using PeakForce Tapping AFM
使用 PeakForce Tape AFM 表征软聚合物的粘合和机械性能的机器学习方法
  • DOI:
    10.1021/acs.macromol.2c00147
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Rajabifar, Bahram;Meyers, Gregory F.;Wagner, Ryan;Raman, Arvind
  • 通讯作者:
    Raman, Arvind
Dynamic AFM on Viscoelastic Polymer Samples with Surface Forces
  • DOI:
    10.1021/acs.macromol.8b01485
  • 发表时间:
    2018-12-11
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Rajabifar, Bahram;Jadhav, Yoti M.;Raman, Arvind
  • 通讯作者:
    Raman, Arvind
Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy
  • DOI:
    10.1039/d1nr03437e
  • 发表时间:
    2021-08-30
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Rajabifar, Bahram;Bajaj, Anil;Raman, Arvind
  • 通讯作者:
    Raman, Arvind
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arvind Raman其他文献

Maximising the potential of academic–practitioner collaborations in international development
最大限度地发挥学术与实践者在国际发展中合作的潜力
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Priyanka Brunese;Min K. Lee;Ann Bessenbacher;Arvind Raman;Yuehwern Yih
  • 通讯作者:
    Yuehwern Yih
Anisotropic Mechanical Properties of Living Cells Revealed by Integrated Spinning Disk Confocal and Atomic Force Microscopy
  • DOI:
    10.1016/j.bpj.2017.11.2803
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Yuri M. Efremov;Mirian Velay-Lizancos;Daniel M. Suter;Pablo D. Zavattieri;Arvind Raman
  • 通讯作者:
    Arvind Raman
非線形フォトニック結晶とシリコン・有機ハイブリッド光変調デバイス
非线性光子晶体及硅/有机混合光调制器件
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Kiracofe;Kei Kobayashi;Aleksander Labuda;Arvind Raman;Hirofumi Yamada;井上 振一郎
  • 通讯作者:
    井上 振一郎

Arvind Raman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arvind Raman', 18)}}的其他基金

SNM: Large Scale Manufacturing of Low-Cost Functionalized Carbon Nanomaterials for Energy Storage and Biosensor Applications
SNM:大规模制造用于储能和生物传感器应用的低成本功能化碳纳米材料
  • 批准号:
    1344654
  • 财政年份:
    2013
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics and Bifurcations of Human Posture on Tunable Balance Boards
可调谐平衡板上人体姿势的非线性动力学和分叉
  • 批准号:
    1300632
  • 财政年份:
    2013
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant
Colombia-U.S. Workshop on Nanotechnology in Energy and Medical Applications
哥伦比亚-美国
  • 批准号:
    1157747
  • 财政年份:
    2012
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant
Materials World Network: Probing in-Vitro Structure-Property-Function Relationships of Ciruses at High-Resolution using Advanced Atomic Force Microscopy Methods
材料世界网络:使用先进原子力显微镜方法以高分辨率探测 Ciruses 的体外结构-性质-功能关系
  • 批准号:
    1008189
  • 财政年份:
    2010
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant
GOALI: Nonlinear, Multi-modal, and Stochastic Dynamics of Low-stiffness Microcantilevers in Liquid Environment Atomic Force Microscopy
目标:液体环境原子力显微镜中低刚度微悬臂梁的非线性、多模态和随机动力学
  • 批准号:
    0927648
  • 财政年份:
    2009
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics of Microcantilevers Interacting with Nanostructures: New Paradigms for Ultrasensitive Atomic Force Microscopy
微悬臂梁与纳米结构相互作用的非线性动力学:超灵敏原子力显微镜的新范例
  • 批准号:
    0700289
  • 财政年份:
    2007
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant
Nonlinear dynamics of microcantilevers interacting with nanostructures - applications to biomolecular sensing and nanotribology
微悬臂梁与纳米结构相互作用的非线性动力学 - 在生物分子传感和纳米摩擦学中的应用
  • 批准号:
    0409660
  • 财政年份:
    2004
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Mechanics and Aeroelastic Stability of High-Speed Rotating Disks and Translating Webs
职业:高速旋转盘和平移腹板的非线性力学和气动弹性稳定性
  • 批准号:
    0134455
  • 财政年份:
    2002
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant
Vibrations and Nonlinear Dynamics of Microcantilevers Interacting with Nanoscale Structures: Applications to Atomic Force Microscopy
与纳米级结构相互作用的微悬臂梁的振动和非线性动力学:在原子力显微镜中的应用
  • 批准号:
    0116414
  • 财政年份:
    2001
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant

相似国自然基金

第16届流动控制、测量与可视化国际会议
  • 批准号:
    12342012
  • 批准年份:
    2023
  • 资助金额:
    8.00 万元
  • 项目类别:
    专项项目
基于光学可视化测量的深冷高压氢射流及喷射火理论模型研究
  • 批准号:
    52306255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
激光多普勒超高频空间超声场可视化测量及动态表征方法研究
  • 批准号:
    62305336
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
第16届流动控制、测量与可视化国际会议
  • 批准号:
    12142209
  • 批准年份:
    2021
  • 资助金额:
    15.00 万元
  • 项目类别:
    专项项目
全景可视化变形测量方法及在热力耦合管路损伤行为研究中的应用
  • 批准号:
    12172200
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

Measuring Lifelong Multimorbidity with Patient Perspectives: Implementing and Visualizing the Cumulative Burden Methodology Across Cohorts
从患者的角度衡量终身多重发病率:跨队列实施和可视化累积负担方法
  • 批准号:
    10590654
  • 财政年份:
    2022
  • 资助金额:
    $ 54.24万
  • 项目类别:
Measuring Lifelong Multimorbidity with Patient Perspectives: Implementing and Visualizing the Cumulative Burden Methodology Across Cohorts
从患者的角度衡量终身多重发病率:跨队列实施和可视化累积负担方法
  • 批准号:
    10421100
  • 财政年份:
    2022
  • 资助金额:
    $ 54.24万
  • 项目类别:
Measuring ground interaction experience for capturing and visualizing city walk impressions
测量地面交互体验以捕捉和可视化城市步行印象
  • 批准号:
    15K12065
  • 财政年份:
    2015
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Measuring and Visualizing STEM Pathways
测量和可视化 STEM 路径
  • 批准号:
    1538763
  • 财政年份:
    2015
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Standard Grant
Developing Digital Paleontological Collections: Searching, Visualizing, and Measuring Virtual Specimens
开发数字古生物学馆藏:搜索、可视化和测量虚拟标本
  • 批准号:
    9870856
  • 财政年份:
    1998
  • 资助金额:
    $ 54.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了