2017 Georgia International Topology Conference
2017年格鲁吉亚国际拓扑会议
基本信息
- 批准号:1719320
- 负责人:
- 金额:$ 9.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF award provides partial support for the octennial Georgia International Topology Conference, to be held at the University of Georgia from May 22 to June 2, 2017. Topology studies the mathematical properties of "spaces," from the physical 3-dimensional space and 4-dimensional space-time in which we carry out our daily lives, to much more abstract spaces such as the space of all possible configurations of a robot or all possible solutions to an equation. This conference will bring together about two hundred topologists from around the world to share state of the art knowledge, hear talks from a select group of internationally renowned experts on the most important research results of the past eight years, and develop new collaborations. This conference has a history of showcasing groundbreaking work and inspiring many generations of topologists, and this year's iteration will continue that tradition. This grant will support travel expenses for graduate students, early career researchers and speakers.The purpose of the 2017 conference is to have the most important results obtained during the last few years in geometric topology and related geometry presented to a wide topological audience,including a large number of students and recent PhD's, and to introduce young mathematicians to the techniques underlying these results. The topics will highlight exciting new developments including advances in hyperbolic three-manifolds, mapping class groups, symplectic rigidity and flexibility, contact topology, and invariants of knots, three-manifolds, and four-manifolds. Historically this meeting has generated tremendous interest among graduate students and recent PhD's. Special attention is given to inviting young researchers in topology to speak. The combination of speakers and topics to be presented will offer students and fresh Ph.D.s a great opportunity to listen to and interact with the leaders in the subject as well as with successful mathematicians at the beginning of their careers. To complement the research talks, a series of expository lectures are scheduled that will introduce young mathematicians to the major themes of the conference. Previous proceedings of the Georgia Topology Conference have been among the best of any conference proceedings. Continuing with the tradition, all of the speakers will be invited to submit articles and conference participants will be enlisted to help review submitted articles for the proceedings.The conference website is at: https://research.franklin.uga.edu/topology/content/2017-georgia-international-topology-conference
该 NSF 奖项为 2017 年 5 月 22 日至 6 月 2 日在佐治亚大学举行的十年一度的佐治亚国际拓扑会议提供部分支持。拓扑学从物理 3 维空间和 4 维空间研究“空间”的数学特性。我们日常生活的维度时空,到更抽象的空间,例如机器人所有可能配置的空间或方程所有可能解的空间。此次会议将汇集来自世界各地的约 200 名拓扑学家,分享最先进的知识,听取精选的国际知名专家关于过去八年最重要研究成果的演讲,并开展新的合作。这次会议历来展示了开创性的工作并激励了许多代拓扑学家,今年的迭代将延续这一传统。这笔赠款将支持研究生、早期职业研究人员和演讲者的旅费。2017 年会议的目的是将过去几年在几何拓扑和相关几何领域取得的最重要成果呈现给广大拓扑受众,包括大量的学生和最近的博士学位,并向年轻的数学家介绍这些结果背后的技术。这些主题将重点介绍令人兴奋的新发展,包括双曲三流形、映射类群、辛刚性和柔韧性、接触拓扑以及结、三流形和四流形的不变量。从历史上看,这次会议引起了研究生和新近博士生的极大兴趣。 特别注重邀请拓扑学领域的年轻研究人员发言。演讲者和演讲主题的结合将为学生和新博士提供一个很好的机会来聆听该学科的领导者以及职业生涯初期的成功数学家的演讲并与他们互动。为了补充研究讲座,安排了一系列说明性讲座,向年轻数学家介绍会议的主要主题。 乔治亚州拓扑会议的往届会议记录是所有会议会议记录中最好的。延续传统,所有演讲者将被邀请提交文章,会议参与者将被邀请帮助审阅会议提交的文章。会议网站位于:https://research.franklin.uga.edu/topology/内容/2017-乔治亚-国际拓扑会议
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Usher其他文献
MATH 8230 LECTURE NOTES, SPRING 2015
数学 8230 讲义,2015 年春季
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Michael Usher - 通讯作者:
Michael Usher
THE SHARP ENERGY-CAPACITY INEQUALITY
能源容量严重不平等
- DOI:
10.1142/s0219199710003889 - 发表时间:
2008 - 期刊:
- 影响因子:1.6
- 作者:
Michael Usher - 通讯作者:
Michael Usher
Friend of My Friend: Network Formation with Two-Hop Benefit
我朋友的朋友:具有两跳优势的网络形成
- DOI:
10.1007/s00224-014-9582-4 - 发表时间:
2013 - 期刊:
- 影响因子:0.5
- 作者:
Elliot Anshelevich;Onkar Bhardwaj;Michael Usher - 通讯作者:
Michael Usher
Fragmented Care of Hospital Super-utilizers: A Cross-sectional Study
医院超级利用者的碎片化护理:一项横断面研究
- DOI:
10.21203/rs.3.rs-114426/v1 - 发表时间:
2020 - 期刊:
- 影响因子:5.4
- 作者:
Zachary P. Kaltenborn;Koushik Paul;Jonathan D. Kirsch;Michael Aylward;Elizabeth A Rogers;Michael Rhodes;Michael Usher - 通讯作者:
Michael Usher
Submanifolds and the Hofer norm
子流形和 Hofer 范数
- DOI:
10.4171/jems/470 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Michael Usher - 通讯作者:
Michael Usher
Michael Usher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Usher', 18)}}的其他基金
Symplectic Floer Theory and Persistent Homology
辛弗洛尔理论和持久同调
- 批准号:
1509213 - 财政年份:2015
- 资助金额:
$ 9.88万 - 项目类别:
Standard Grant
Filtered Floer Theory and Hamiltonian Dynamics
过滤弗洛尔理论和哈密顿动力学
- 批准号:
1105700 - 财政年份:2011
- 资助金额:
$ 9.88万 - 项目类别:
Standard Grant
相似海外基金
Emory/Georgia TB Research Advancement Center (TRAC)
埃默里/佐治亚州结核病研究促进中心 (TRAC)
- 批准号:
10596175 - 财政年份:2022
- 资助金额:
$ 9.88万 - 项目类别:
Conference: Participant Support for Fifteenth International Conference on Fracture; Atlanta, Georgia; 11-16 June 2023
会议:第十五届国际骨折会议与会者支持;
- 批准号:
2246579 - 财政年份:2022
- 资助金额:
$ 9.88万 - 项目类别:
Standard Grant
Emory/Georgia TB Research Advancement Center (TRAC)
埃默里/佐治亚州结核病研究促进中心 (TRAC)
- 批准号:
10429402 - 财政年份:2022
- 资助金额:
$ 9.88万 - 项目类别:
Emory/Georgia TB Research Advancement Center (TRAC)
埃默里/佐治亚州结核病研究促进中心 (TRAC)
- 批准号:
10429400 - 财政年份:2022
- 资助金额:
$ 9.88万 - 项目类别:
Emory/Georgia TB Research Advancement Center (TRAC)
埃默里/佐治亚州结核病研究促进中心 (TRAC)
- 批准号:
10429399 - 财政年份:2022
- 资助金额:
$ 9.88万 - 项目类别: