SHF:Small:Neuromorphic Architectures for On-line Learning
SHF:Small:用于在线学习的神经形态架构
基本信息
- 批准号:1718633
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the increasingly large volumes of data being generated in all fields, it is difficult to draw meaningful understanding from the information. Deep learning is a collection of new algorithms that have been developed recently to make it easier to understand large volumes of data. These algorithms typically have two phases of operation: training and inference. In the training phase, the algorithms learn how to interpret data, while in the inference phase the trained algorithms process new data based on what they learned earlier. Training generally requires high power computing. This project will develop novel computing systems for training that require low power consumption. This makes them suitable for portable systems, and hence could enable the design of significantly smarter products that learn continuously from their environment and are able to better interact with the environment. The proposed work includes outreach to K-12 students and also training of undergraduate, graduate, and minority students. The novel computing systems to be developed will employ memristor circuits to accelerate the training phase of deep learning algorithms. Memristors are nanoscale resistive memory devices. The PIs will develop and characterize the memristors and then design deep learning circuits for training based on the characterized memristor devices. The PIs will also design computing systems based on the training circuits to be developed. These computing systems will have applications in a broad range of fields, including low power consumer products and high power clusters of computers.
随着在所有领域都生成越来越多的数据,很难从信息中获得有意义的理解。深度学习是最近开发的新算法的集合,以使了解大量数据变得更加容易。这些算法通常具有两个操作阶段:训练和推理。在训练阶段,算法学习如何解释数据,而在推理阶段,训练算法根据他们之前学到的知识来处理新数据。培训通常需要高功率计算。该项目将开发用于需要低功耗的培训的新型计算系统。这使它们适合于便携式系统,因此可以设计出明智的产品,这些产品从环境中不断学习并能够更好地与环境互动。拟议的工作包括向K-12学生进行宣传,还包括对本科,研究生和少数族裔学生的培训。要开发的新型计算系统将采用回忆录电路来加速深度学习算法的训练阶段。回忆录是纳米级电阻内存设备。 PI将开发并表征备忘录,然后根据特征的Memristor设备设计深度学习电路,以培训。 PI还将根据要开发的训练电路设计计算系统。这些计算系统将在广泛的字段中具有应用程序,包括低功率消费产品和计算机的高功率簇。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transmission Electron Microscopy Study on the Effect of Thermal and Electrical Stimuli on Ge2Te3 Based Memristor Devices
- DOI:10.3389/felec.2022.872163
- 发表时间:2022-04
- 期刊:
- 影响因子:8.6
- 作者:Austin Shallcross;K. Mahalingam;E. Shin;G. Subramanyam;Md. Shahanur Alam;Tarek Taha;S. Ganguli;Cynthia T. Bowers;Benson Athey;A. Hilton;Anisha Roy;R. Dhall
- 通讯作者:Austin Shallcross;K. Mahalingam;E. Shin;G. Subramanyam;Md. Shahanur Alam;Tarek Taha;S. Ganguli;Cynthia T. Bowers;Benson Athey;A. Hilton;Anisha Roy;R. Dhall
Memristor Based Neuromorphic Adaptive Resonance Theory for One-Shot Online Learning and Network Intrusion Detection
- DOI:10.1145/3407197.3407608
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Md. Shahanur Alam;C. Yakopcic;G. Subramanyam;T. Taha
- 通讯作者:Md. Shahanur Alam;C. Yakopcic;G. Subramanyam;T. Taha
Conversion of an Unsupervised Anomaly Detection System to Spiking Neural Network for Car Hacking Identification
将无监督异常检测系统转换为尖峰神经网络以进行汽车黑客识别
- DOI:10.1109/igsc51522.2020.9291232
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jaoudi, Yassine;Yakopcic, Chris;Taha, Tarek
- 通讯作者:Taha, Tarek
Low Power Memristor Crossbar Based Winner Takes All Circuit
- DOI:10.1109/ijcnn.2018.8489735
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Rasitha Fernando;Raqibul Hasan;T. Taha
- 通讯作者:Rasitha Fernando;Raqibul Hasan;T. Taha
Memristor Based Neuromorphic Network Security System Capable of Online Incremental Learning and Anomaly Detection
基于忆阻器的神经形态网络安全系统,能够在线增量学习和异常检测
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Alam, Md. Shahanur;Yakopcic, Chris;Subramanyam, Guru;Taha, Tarek M.
- 通讯作者:Taha, Tarek M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tarek Taha其他文献
Strictly Decentralized Approaches for Multi-Robot Grasp Coordination
多机器人抓取协调的严格分散方法
- DOI:
10.1109/case56687.2023.10260355 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rajkumar Muthusamy;V. Kyrki;Praveen Kumar Muthusamy;Tarek Taha;I. Hussain;Yahya H. Zweiri;Domenico Prattichizzo;Dongming Gan - 通讯作者:
Dongming Gan
A brief insight into the rare diseases in Egypt
埃及罕见病简述
- DOI:
10.1007/s44162-023-00010-1 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tarek Taha;Dina Ahmed;Zaynab El;Gehad Atef Oura;S. Elshenawy;Yasmine Gaber;Tarek Elnagdy;Khaled Amer - 通讯作者:
Khaled Amer
The Egypt Genome Project.
埃及基因组计划。
- DOI:
10.1038/s41588-024-01739-1 - 发表时间:
2024 - 期刊:
- 影响因子:30.8
- 作者:
M. Elmonem;Neveen A. Soliman;Ahmed Moustafa;Y. Gad;Wael A. Hassan;Tarek Taha;Gina El;Mahmoud Sakr;Khaled Amer - 通讯作者:
Khaled Amer
Egypt genome: Towards an African new genomic era.
埃及基因组:迈向非洲新基因组时代。
- DOI:
10.1016/j.jare.2024.06.003 - 发表时间:
2024 - 期刊:
- 影响因子:10.7
- 作者:
Khaled Amer;Neveen A. Soliman;Sameh Soror;Y. Gad;Ahmed Moustafa;M. Elmonem;May Amer;Ameera Ragheb;Amira Kotb;Tarek Taha;Wael Ali;Mahmoud Sakr;Khaled Abdel Ghaffar - 通讯作者:
Khaled Abdel Ghaffar
Circuit Optimization Techniques for Efficient Ex-Situ Training of Robust Memristor Based Liquid State Machine
基于鲁棒忆阻器的液态状态机高效异地训练的电路优化技术
- DOI:
10.1145/3565478.3572542 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alex Henderson;C. Yakopcic;Steven Harbour;Tarek Taha;Cory E. Merkel;Hananel Hazan - 通讯作者:
Hananel Hazan
Tarek Taha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tarek Taha', 18)}}的其他基金
Collaborative Research: High Performance Cellular Simultaneous Recurrent Network based Pattern Recognition
合作研究:基于高性能蜂窝同时循环网络的模式识别
- 批准号:
1309708 - 财政年份:2013
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
CAREER: Scalable Computer Architectures of Hierarchical Noeoctex Models and K-12 Education Enhancement
职业:分层 Noeoctex 模型的可扩展计算机架构和 K-12 教育增强
- 批准号:
1053149 - 财政年份:2009
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
CAREER: Scalable Computer Architectures of Hierarchical Noeoctex Models and K-12 Education Enhancement
职业:分层 Noeoctex 模型的可扩展计算机架构和 K-12 教育增强
- 批准号:
0644231 - 财政年份:2007
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
相似国自然基金
SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
- 批准号:82373728
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
APOE调控小胶质细胞脂代谢模式在ASD认知和社交损伤中的作用及机制研究
- 批准号:82373597
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小胶质细胞外泌体通过miR-486抑制神经元铁死亡介导电针修复脊髓损伤的机制研究
- 批准号:82360454
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
CUL4B正反馈调控FOXO3a-FOXM1通路促进非小细胞肺癌放疗抵抗的机制研究
- 批准号:82360584
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
葡萄糖饥饿条件下AMPK-CREB-PPA1信号通路促进非小细胞肺癌细胞增殖的分子机制研究
- 批准号:82360518
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SHF: Small: RUI: CMOS+X: Honey-ReRAM Enabled 3D Neuromorphic Accelerator
合作研究:SHF:小型:RUI:CMOS X:Honey-ReRAM 支持的 3D 神经形态加速器
- 批准号:
2247343 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: RUI: CMOS+X: Honey-ReRAM Enabled 3D Neuromorphic Accelerator
合作研究:SHF:小型:RUI:CMOS X:Honey-ReRAM 支持的 3D 神经形态加速器
- 批准号:
2247342 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
FET:Small: An Integrated Unipolar-0.5T0.5R RRAM Crossbar Array for Neuromorphic Computing
FET:小型:用于神经形态计算的集成单极 0.5T0.5R RRAM 交叉阵列
- 批准号:
2132820 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
CNS Core: Small: Online Performance Monitoring of Neuromorphic Services
CNS 核心:小型:神经形态服务的在线性能监控
- 批准号:
2008167 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
FET: Small: 2D Material Compound Synapse Arrays for Robust In-Memory and Neuromorphic Computing (2DNeuro)
FET:小型:2D 材料复合突触阵列,用于强大的内存和神经形态计算 (2DNeuro)
- 批准号:
2001107 - 财政年份:2019
- 资助金额:
$ 44万 - 项目类别:
Standard Grant