SaTC: CORE: Small: Towards Secure and Reliable Network Tomography in Wireline and Wireless Networks

SaTC:核心:小型:在有线和无线网络中实现安全可靠的网络层析成像

基本信息

  • 批准号:
    1717969
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Today's networks, such as the Internet, cellular networks, and the Internet of Things, provide ubiquitous wired or wireless connections over large areas. Secure and reliable operations are among the most important objectives in these networks. Network tomography has become a promising framework for accurate monitoring of network operation status, which is vital to ensure an efficient and reliable network environment. However, this measurement process can be exploited by malicious attackers to generate falsified, misleading measurement or monitoring results, which significantly affects follow-on network operations based on these results, and accordingly degrades the operational reliability and health of today's networks. The goal of this project is to analyze security vulnerabilities, understand potential security attack strategies and their impact, and design effective defense mechanisms against such attacks. The research in this project will extend the technical knowledge of security vulnerabilities, attacks and defense during network measurement. The project will also offer undergraduate students opportunities to gain research experiences in network measurement and security. The project focuses on investigating a new class of security attacks, called measurement integrity attacks, during the measurement process in network tomography. Unlike conventional data integrity problems that can be usually protected by standard security methods (e.g., encryption and authentication), a key challenge in measurement integrity attacks is that the network event data (e.g., packet transmission/delivery timings and loss) during measurement is not protected by standard security methods, but can be easily manipulated by an inside attacker. This project aims at (i) creating the theoretical foundation to analyze the feasibility and impact of measurement integrity attacks with different attack strategies in wireline and wireless scenarios, (ii) designing robust attack detection and localization methods, and analyzing the effectiveness of such countermeasures, (iii) investigating efficient management methods for network measurement to increase the attack resilience in a network, and (iv) conducting comprehensive evaluation of the efficiency and effectiveness of attack countermeasures in both wireline and wireless networks.
当今的网络,例如Internet,蜂窝网络和物联网,在大区域内提供无处不在的有线或无线连接。安全可靠的操作是这些网络中最重要的目标之一。网络断层扫描已成为准确监视网络操作状态的有希望的框架,这对于确保有效且可靠的网络环境至关重要。但是,恶意攻击者可以利用这种测量过程来产生伪造的,误导性的测量或监测结果,这会严重影响基于这些结果的跟随网络操作,并因此降低了当今网络的操作可靠性和健康。该项目的目的是分析安全漏洞,了解潜在的安全攻击策略及其影响,并针对此类攻击设计有效的防御机制。该项目的研究将扩大网络测量过程中安全漏洞,攻击和防御的技术知识。该项目还将为本科生提供获得网络测量和安全性研究经验的机会。该项目着重于在网络断层扫描中的测量过程中调查新的安全攻击,称为测量完整性攻击。与通常可以通过标准安全方法(例如,加密和身份验证)保护的常规数据完整性问题不同,测量完整性攻击中的关键挑战是,在测量过程中,网络事件数据(例如,测量过程中的数据包传输/交付时间和丢失)不受标准安全方法的保护,但可以通过内部攻击者轻松操纵。 This project aims at (i) creating the theoretical foundation to analyze the feasibility and impact of measurement integrity attacks with different attack strategies in wireline and wireless scenarios, (ii) designing robust attack detection and localization methods, and analyzing the effectiveness of such countermeasures, (iii) investigating efficient management methods for network measurement to increase the attack resilience in a network, and (iv) conducting comprehensive evaluation of the efficiency电线和无线网络中攻击对策的有效性。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ProTO: Proactive Topology Obfuscation Against Adversarial Network Topology Inference
Smart Spying via Deep Learning: Inferring Your Activities from Encrypted Wireless Traffic
Orthogonality-Sabotaging Attacks against OFDMA-based Wireless Networks
No Training Hurdles: Fast Training-Agnostic Attacks to Infer Your Typing
Measurement Integrity Attacks Against Network Tomography: Feasibility and Defense
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhuo Lu其他文献

Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis?
丛枝菌根真菌:对抗破坏性根部半寄生虫甘肃马先蒿的潜在生物防治剂?
  • DOI:
    10.1007/s00572-013-0528-5
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Sui Xiao-Lin;Li Ai-Rong;Chen Yan;Guan Kai-Yun;Zhuo Lu;Liu Yan-Yan
  • 通讯作者:
    Liu Yan-Yan
Research on Recommendation System Based on Neural Network and Data Mining
基于神经网络和数据挖掘的推荐系统研究
Most Cited Computer Networks Articles
被引用最多的计算机网络文章
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luigi Atzori;Antonio Iera;Giacomo Morabito;Michele Nitti;Wenye Wang;Zhuo Lu;M. Berman;Jeffrey S. Chase;Lawrence Landweber;Akihiro Nakao;Max Ott;Dipankar Raychaudhuri;Robert Ricci;I. Seskar;S. Sicari;A. Rizzardi;L. Grieco;A. Coen
  • 通讯作者:
    A. Coen
A Proactive and Deceptive Perspective for Role Detection and Concealment in Wireless Networks
无线网络中角色检测和隐藏的主动和欺骗视角
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuo Lu;Cliff X. Wang;Mingkui Wei
  • 通讯作者:
    Mingkui Wei

Zhuo Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhuo Lu', 18)}}的其他基金

Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
  • 批准号:
    2320973
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
  • 批准号:
    2316719
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: A Comprehensive Training Program of AI for 5G and NextG Wireless Network Security
合作研究:SaTC:EDU:5G 和 NextG 无线网络安全人工智能综合培训项目
  • 批准号:
    2321270
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Wireless Networking Designs for Efficiency and Security
职业:数据驱动的无线网络设计以提高效率和安全性
  • 批准号:
    2044516
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Pilot: Interdisciplinary Training of Data-Centric Security and Resilience of Cyber-Physical Energy Infrastructures
合作研究:网络培训:试点:以数据为中心的网络物理能源基础设施安全性和弹性的跨学科培训
  • 批准号:
    2017194
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
  • 批准号:
    2029875
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CRII: NeTS: A Proactive Perspective on Preventing Network Inference: Shifting from Optimized to Dynamic Wireless Network Design
CRII:NeTS:防止网络推理的主动视角:从优化到动态无线网络设计的转变
  • 批准号:
    1701394
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CRII: NeTS: A Proactive Perspective on Preventing Network Inference: Shifting from Optimized to Dynamic Wireless Network Design
CRII:NeTS:防止网络推理的主动视角:从优化到动态无线网络设计的转变
  • 批准号:
    1464114
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了