CAREER: High Order Structure-Preserving Numerical Methods for Hyperbolic Conservation Laws

职业:双曲守恒定律的高阶结构保持数值方法

基本信息

  • 批准号:
    1654673
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

Partial differential equations of the type known as hyperbolic conservation laws have attracted great attention in mathematical, scientific, and engineering communities due to their wide practical applications in modeling physical systems of interest in fluid mechanics, aerodynamics, meteorology, combustion, and other areas. Development of efficient and accurate numerical algorithms for simulation of solutions to conservation laws continues to be a challenging task. Structure-preserving methods, which provide numerical solutions that preserve a certain continuum property of the underlying models exactly, are recently demonstrated to be more efficient with limited computational resources. This project aims to develop a comprehensive framework to understand structure-preserving methods for hyperbolic conservation laws. The work will have a direct impact in many multi-disciplinary application areas, including fluid and gas dynamics, astrophysics, and atmospheric modeling. This project also has significant broader impact through various educational and outreach activities aimed at students at all levels. These activities include a summer camp program that will expose students including underrepresented minorities to the areas of mathematical modeling, computational science, and computational mathematics. Graduate students will also be mentored and trained through planned working group activities. The notion of conservation (of number, mass, energy, momentum) is a fundamental principle that is used to derive hyperbolic conservation laws. Recent study reveals that structure-preserving numerical methods, which either conserve important physical quantities in addition to mass or preserve other properties of the underlying physical problems, are demonstrated to be more accurate and often have a much improved long time behavior. The objective of this project is to establish a detailed study of novel high-order structure-preserving methods for the linear and nonlinear hyperbolic conservation laws arising in various applications, and to educate students at various levels about the potential and challenges of utilizing numerical simulation to solve important practical problems. The PI aims to study structure-preserving numerical methods in the following directions: (i) Energy conserving methods for wave equations; (ii) Asymptotic preserving methods for kinetic equations; (iii) Well-balanced methods for hyperbolic problems with source terms. The activity is planned to include new algorithm development, theoretical numerical analysis, numerical implementation, and practical applications. This project will also provide excellent training opportunities for graduate and undergraduate students interested in computational sciences, and includes an outreach program for high school students.
双曲守恒定律类型的偏微分方程因其在流体力学、空气动力学、气象学、燃烧和其他领域感兴趣的物理系统建模中的广泛实际应用而引起了数学、科学和工程界的极大关注。开发高效且准确的数值算法来模拟守恒定律的解决方案仍然是一项具有挑战性的任务。结构保持方法提供的数值解能够精确地保持底层模型的某些连续特性,最近被证明在有限的计算资源下更加有效。该项目旨在开发一个全面的框架来理解双曲守恒定律的结构保持方法。这项工作将对许多多学科应用领域产生直接影响,包括流体和气体动力学、天体物理学和大气建模。该项目还通过针对各级学生的各种教育和外展活动产生了更广泛的影响。这些活动包括夏令营计划,让包括少数族裔在内的学生接触数学建模、计算科学和计算数学领域。研究生还将通过计划的工作组活动接受指导和培训。守恒定律(数量、质量、能量、动量)的概念是用于推导双曲守恒定律的基本原理。最近的研究表明,结构保持数值方法要么保留除质量之外的重要物理量,要么保留潜在物理问题的其他属性,被证明更准确,并且通常具有大大改进的长期行为。该项目的目标是对各种应用中出现的线性和非线性双曲守恒定律的新型高阶结构保持方法进行详细研究,并教育各个级别的学生了解利用数值模拟来实现线性和非线性双曲守恒定律的潜力和挑战。解决重要的实际问题。课题负责人的目标是在以下方向研究保结构数值方法: (i) 波动方程的能量守恒方法; (ii) 动力学方程的渐近保持方法; (iii) 具有源项的双曲问题的平衡方法。该活动计划包括新算法开发、理论数值分析、数值实现和实际应用。该项目还将为对计算科学感兴趣的研究生和本科生提供极好的培训机会,并包括针对高中生的外展计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yulong Xing其他文献

Railway track circuit fault diagnosis using 1DCNN considering locality dependencies and multiscale feature fusion
考虑局部依赖性和多尺度特征融合的1DCNN铁路轨道电路故障诊断
Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels
明渠浅水流保正性良好平衡间断伽辽金法
  • DOI:
    10.1016/j.advwatres.2018.03.001
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Shouguo Qian;Gang Li;Fengjing Shao;Yulong Xing
  • 通讯作者:
    Yulong Xing
Time Synchronization for Wireless Sensor NetworksUsing Adaptive Linear Prediction
使用自适应线性预测的无线传感器网络时间同步
Time Synchronization for Wireless Sensor Networks Using Adaptive Linear Prediction
Finite element approximations of a class of nonlinear stochastic wave equation with multiplicative noise
一类带乘性噪声的非线性随机波动方程的有限元逼近
  • DOI:
    10.1007/s10915-022-01816-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yukun Li;Shuonan Wu;Yulong Xing
  • 通讯作者:
    Yulong Xing

Yulong Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yulong Xing', 18)}}的其他基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: High Order Structure-Preserving Numerical Methods for Hyperbolic Conservation Laws
职业:双曲守恒定律的高阶结构保持数值方法
  • 批准号:
    1753581
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Development of high-order accurate numerical methods for the shallow-water equations and other hyperbolic conversation laws with source terms
开发浅水方程和其他带有源项的双曲对话律的高阶精确数值方法
  • 批准号:
    1621111
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of high-order accurate numerical methods for the shallow-water equations and other hyperbolic conversation laws with source terms
开发浅水方程和其他带有源项的双曲对话律的高阶精确数值方法
  • 批准号:
    1216454
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
  • 批准号:
    62303255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
染色质三维构象新型调控因子的机制研究
  • 批准号:
    31900431
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
不同环境规制下绿色创新效应研究:微观机制与政策选择
  • 批准号:
    71903063
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
  • 批准号:
    10644253
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Effects of adolescent social isolation on adult decision making and corticostriatal circuitry
青少年社会隔离对成人决策和皮质纹状体回路的影响
  • 批准号:
    10643893
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Structural and Biological Effects of Ribonucleotide Insertion into Telomeres
核糖核苷酸插入端粒的结构和生物学效应
  • 批准号:
    10750783
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Exploration of cis-regulatory diversity underlying phenotypic innovation
表型创新背后的顺式调控多样性探索
  • 批准号:
    10351058
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Older Sexual and Gender Minority Patients with Serious Illness: Program-Building to Identify and Address Needs
患有严重疾病的老年性和性别少数患者:建立项目以确定和满足需求
  • 批准号:
    10523705
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了