More Power to the Many: Scalable Ensemble-based Simulations and Data Analysis
为更多人提供更多力量:可扩展的基于集成的模拟和数据分析
基本信息
- 批准号:1713749
- 负责人:
- 金额:$ 2.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Glutamate receptors, and understanding their binding characteristics, are of fundamental biomedical importance as they mediate neuronal signaling. This project proposes to characterize and understand glutamate binding to the N-methyl-D-aspartate receptor (NMDAr), a member of the glutamate receptor family of proteins, with potential profound consequences for neuroscience and pharmacology. However, the characterization of the configurational landscape of NMDAr is a High Performance Computing (HPC) problem. It requires simulations with timescales and system sizes well beyond any that have previously been undertaken. The project will use the petascale computing capabilities of Blue Waters to study such a system, using new sampling methods and original computing and data processing techniques.The project will use molecular dynamics (MD) simulations to study this macromolecular system. However, it remains a challenge to obtain an adequate sampling of the configurational space of complex chemical systems to accurately describe the structural properties of important substates, their relative propensities, and accessible transitions between them. The project proposes to use a novel software framework that on the right computational resource makes a step-change in our ability to sample the conformational space of macromolecules by MD. The project will study a protein of great biomedical relevance that exemplifies these issues, namely the ligand binding domain (LBD) of the N-methyl-D-aspartate receptor (NMDAr). The idea at the core of the software strategy is similar to many other multiscale methods -- such as umbrella sampling, metadynamics, adaptive biasing methods, or transition path sampling: instead of one or a few long MD trajectories being run, many (hundreds or thousands) of short trajectories may be simulated concurrently. Information is extracted from these very large datasets using sophisticated data reduction and analysis methods, and the coarse-grained information -- which embodies the chemical insight necessary to understand the system, e.g. an approximate free energy -- is used to refine the way in which further trajectories are generated (i.e., how we sample). Results from the analysis of the space sampled are then used in an iterative process to further direct the search of the conformational space (i.e., where we sample). This Blue Waters allocation will allow the project to access a total of 2.7 milliseconds of simulation of the NMDAr LBD system. With the three orders of magnitude (at least) speed-up in sampling allowed by our methodology with respect to plain MD, the project will be able to map the configurational landscape of this protein relevant for conformational dynamics up to a timescale of seconds, that is, to completely characterize the role of the ligand binding domain in the biological function and mechanism of NMDAr.
谷氨酸受体以及了解其结合特性具有重要的生物医学基础,因为它们介导神经元信号传导。该项目旨在表征和理解谷氨酸与 N-甲基-D-天冬氨酸受体 (NMDAr) 的结合,NMDAr 是谷氨酸受体蛋白质家族的成员,对神经科学和药理学具有潜在的深远影响。 然而,NMDAr 配置景观的表征是一个高性能计算 (HPC) 问题。 它需要模拟的时间尺度和系统规模远远超出以前进行的任何模拟。 该项目将利用Blue Waters的千万亿级计算能力,采用新的采样方法以及独创的计算和数据处理技术来研究这样的系统。该项目将使用分子动力学(MD)模拟来研究这种大分子系统。 然而,获得复杂化学系统构型空间的充分采样以准确描述重要亚态的结构特性、它们的相对倾向以及它们之间的可访问转变仍然是一个挑战。 该项目建议使用一种新颖的软件框架,该框架在正确的计算资源上使我们通过 MD 对大分子构象空间进行采样的能力发生了重大变化。 该项目将研究一种具有重大生物医学相关性的蛋白质,它可以说明这些问题,即 N-甲基-D-天冬氨酸受体 (NMDAr) 的配体结合域 (LBD)。 软件策略的核心思想与许多其他多尺度方法类似,例如伞式采样、元动力学、自适应偏置方法或过渡路径采样:不是运行一个或几个长 MD 轨迹,而是运行许多(数百或可以同时模拟数千条短轨迹。 使用复杂的数据缩减和分析方法以及粗粒度信息从这些非常大的数据集中提取信息——这体现了理解系统所需的化学洞察力,例如近似自由能——用于细化生成进一步轨迹的方式(即我们采样的方式)。然后,将采样空间的分析结果用于迭代过程,以进一步指导构象空间(即我们采样的位置)的搜索。 Blue Waters 的这项分配将使该项目能够获得总共 2.7 毫秒的 NMDAr LBD 系统模拟。通过我们的方法相对于普通 MD 允许(至少)三个数量级的采样加速,该项目将能够在长达数秒的时间尺度上绘制与构象动力学相关的该蛋白质的构型景观,即即,完整表征配体结合结构域在NMDAr的生物学功能和机制中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shantenu Jha其他文献
Shantenu Jha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shantenu Jha', 18)}}的其他基金
Collaborative Research: OAC Core: Smart Surrogates for High Performance Scientific Simulations
合作研究:OAC Core:高性能科学模拟的智能替代品
- 批准号:
2212549 - 财政年份:2022
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Elements: RADICAL-Cybertools: Middleware Building Blocks for NSF's Cyberinfrastructure Ecosystem.
元素: RADICAL-Cybertools:NSF 网络基础设施生态系统的中间件构建块。
- 批准号:
1931512 - 财政年份:2020
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Collaborative Proposal: EarthCube Integration: ICEBERG: Imagery Cyberinfrastructure and Extensible Building-Blocks to Enhance Research in the Geosciences
合作提案:EarthCube 集成:ICEBERG:图像网络基础设施和可扩展构建模块,以加强地球科学研究
- 批准号:
1740572 - 财政年份:2017
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Collaborative Research: Campus Compute Cooperative (CCC) Planning Grant Proposal
协作研究:校园计算合作社 (CCC) 规划拨款提案
- 批准号:
1748197 - 财政年份:2017
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
EarthCube Building Blocks: Collaborative Proposal: The Power of Many: Ensemble Toolkit for Earth Sciences
EarthCube 构建模块:协作提案:多人的力量:地球科学集成工具包
- 批准号:
1639694 - 财政年份:2016
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Collaborative Research: The Power of Many: Scalable Compute and Data-Intensive Science on Blue Waters
协作研究:多人的力量:蓝水域的可扩展计算和数据密集型科学
- 批准号:
1516469 - 财政年份:2015
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
EarthCube RCN: Collaborative Research: Research Coordination Network for High-Performance Distributed Computing in the Polar Sciences
EarthCube RCN:协作研究:极地科学高性能分布式计算的研究协调网络
- 批准号:
1542110 - 财政年份:2015
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Collaborative Research: Designing and Assessing Effective "Hands-On" Training for Computational Science
协作研究:设计和评估有效的计算科学“实践”培训
- 批准号:
1546668 - 财政年份:2015
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
SI2-SSE: RADICAL Cybertools: Scalable, Interoperable and Sustainable Tools for Science
SI2-SSE:RADICAL Cybertools:可扩展、可互操作且可持续的科学工具
- 批准号:
1440677 - 财政年份:2015
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Collaborative Research: Streaming and Steering Applications: Requirements and Infrastructure (October 1-3, 2015)
合作研究:流媒体和转向应用:要求和基础设施(2015 年 10 月 1-3 日)
- 批准号:
1549516 - 财政年份:2015
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
相似国自然基金
基于切平面受限Power图的快速重新网格化方法
- 批准号:62372152
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
用于癌症早期诊断的超分辨力量子等离激元单分子无标记检测技术
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模海上风电经柔直联网系统频率支撑能力量化评估与提升策略研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于有效光合辐射模拟的高密度住区绿地年碳增汇潜力量化研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
社会应急力量联合救灾网络的构建、运行与评估研究
- 批准号:72274131
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Approximate Computing for Low-Power Many-Core Processors
低功耗众核处理器的近似计算
- 批准号:
RGPIN-2018-03854 - 财政年份:2022
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual
Theory of multiscale decoherence in open quantum many-body systems
开放量子多体系统中的多尺度退相干理论
- 批准号:
22K13983 - 财政年份:2022
- 资助金额:
$ 2.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Approximate Computing for Low-Power Many-Core Processors
低功耗众核处理器的近似计算
- 批准号:
RGPIN-2018-03854 - 财政年份:2021
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual
Application of quantum computing to many-body coarse-grained molecular simulations
量子计算在多体粗粒度分子模拟中的应用
- 批准号:
20K20970 - 财政年份:2020
- 资助金额:
$ 2.92万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Approximate Computing for Low-Power Many-Core Processors
低功耗众核处理器的近似计算
- 批准号:
RGPIN-2018-03854 - 财政年份:2020
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual