Universal Randomness in Dimension 2

2 维中的普遍随机性

基本信息

  • 批准号:
    1712862
  • 负责人:
  • 金额:
    $ 62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

This research is in probability theory. It will attempt to make connections between a number of different probabilistic models that arise in statistical physics and particle physics. Understanding these connections will result in improved understanding of the physical models. The PI will train students from the undergraduate level through the graduate level. He will also assist in the training of postdoctoral researchers. This research concerns a variety of random fractals that are in some sense planar (i.e., naturally embedded in or parameterized by subsets of the plane). These fractals include random paths, random surfaces, random collections of loops, random trees, random functions, and random growth processes. The objects under study are "universal" in the sense that they arise as limits of many discrete models and "canonical" in the sense that they are uniquely characterized by special symmetries. Several of these objects are motivated by statistical mechanics, string theory, and gauge theory, as well as the study of natural growth processes (lichen, mineral depositions, snowflakes, lightning bolts, etc.) The specific technical goals of the research include the following: understanding the limiting conformal structure of discrete planar maps, generalizing quantum Loewner evolution growth models beyond the regime in which they have been defined, endowing general Liouville quantum gravity surfaces with metric structure, extending known results about random surface scaling limits to random surfaces embedded in higher dimensional spaces, and understanding more about the relationship between lattice Yang-Mills gauge theory (and its variants) and the random surface models that arise in the formulas for Wilson loop expectations. The broader aim is to provide a firmer mathematical understanding of some of our most fundamental models for physical phenomena, ranging from microscopic to macroscopic scales.
这项研究属于概率论。它将尝试在统计物理学和粒子物理学中出现的许多不同概率模型之间建立联系。了解这些联系将有助于加深对物理模型的理解。 PI 将培训从本科到研究生的学生。他还将协助博士后研究人员的培训。这项研究涉及各种随机分形,这些分形在某种意义上是平面的(即自然嵌入平面的子集或由平面的子集参数化)。这些分形包括随机路径、随机表面、随机循环集合、随机树、随机函数和随机增长过程。所研究的对象是“通用的”,因为它们是作为许多离散模型的限制而出现的;并且是“规范的”,因为它们具有特殊对称性的独特特征。其中一些对象是由统计力学、弦理论和规范理论以及自然生长过程的研究(地衣、矿物沉积、雪花、闪电等)激发的。研究的具体技术目标包括以下内容:理解离散平面映射的限制共形结构,将量子 Loewner 演化增长模型推广到其定义范围之外,赋予一般刘维尔量子引力表面度量结构,将关于随机表面缩放限制的已知结果扩展到嵌入的随机表面更高维空间,并更多地了解格子杨-米尔斯规范理论(及其变体)与威尔逊环期望公式中出现的随机表面模型之间的关系。更广泛的目标是对从微观到宏观尺度的物理现象的一些最基本的模型提供更坚定的数学理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Sheffield其他文献

Scott Sheffield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Sheffield', 18)}}的其他基金

Random Surfaces and Related Questions
随机曲面及相关问题
  • 批准号:
    2153742
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Probabilistic and Analytic Aspects of the Loewner Energy
勒纳能量的概率和分析方面
  • 批准号:
    1953945
  • 财政年份:
    2020
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Gaussian Free Field and Conformal Loop Ensemble
高斯自由场和共形环系综
  • 批准号:
    1406411
  • 财政年份:
    2014
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Liouville quantum gravity and conformal probability
刘维尔量子引力和共形概率
  • 批准号:
    1209044
  • 财政年份:
    2012
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
CAREER: Random Surfaces and Conformal Probability
职业:随机曲面和共形概率
  • 批准号:
    0946296
  • 财政年份:
    2009
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
CAREER: Random Surfaces and Conformal Probability
职业:随机曲面和共形概率
  • 批准号:
    0645585
  • 财政年份:
    2007
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0403182
  • 财政年份:
    2004
  • 资助金额:
    $ 62万
  • 项目类别:
    Fellowship

相似国自然基金

考虑微结构随机性的生物材料断裂力学模型及其仿生应用
  • 批准号:
    12372325
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Hamilton系统中不可逆性、非交换性与随机性相关问题的理论研究
  • 批准号:
    12231010
  • 批准年份:
    2022
  • 资助金额:
    235 万元
  • 项目类别:
    重点项目
面向高随机性非集聚出行需求的公交资源响应式优化方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子随机性的量化和提纯研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于产出随机性的供应链采购策略与定价决策研究
  • 批准号:
    72271216
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Interplay between geometry and randomness in fitness landscapes for expanding populations
人口增长的健身景观中几何与随机性之间的相互作用
  • 批准号:
    EP/X040089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Research Grant
Development of self-organization model and verification of forecast accuracy of Baiu heavy rainfall systems based on the randomness of water content
基于含水量随机性的Baiu暴雨系统自组织模型建立及预报精度验证
  • 批准号:
    22KJ1845
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
AF: Small: The Power of Randomness in Decision and Verification
AF:小:决策和验证中随机性的力量
  • 批准号:
    2312540
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了