AF: Small: The Power of Randomness in Decision and Verification

AF:小:决策和验证中随机性的力量

基本信息

  • 批准号:
    2312540
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

The ability to make random choices seems to simplify several computational tasks. For example, in order to decide whether two formulas like x*x-y*y and (x+y)*(x-y) are equivalent, one can merely plug in random values for x and y and verify whether the two formulas yield the same value. Even for complicated formulas, this is a reliable strategy, easier than manipulating the abstract formulas. A more involved use of randomness consists of a way to spot-check computations that requires significantly less effort than performing the computations themselves---a feature of paramount importance in the day and age of delegating computations to the cloud. This project investigates the potential of achieving similar efficiency in decision and verification without randomness. It incorporates graduate and undergraduate training and education, and includes the development of a textbook that makes computational thinking and the area of quantum algorithms more accessible to a broader public.The project explores two new directions in the area of derandomization. In the setting of polynomial-time decision procedures with bounded error (i.e., bounded-error probabilistic polynomial time class, BPP), the investigators propose a principled approach towards derandomizing Polynomial Identity Testing (PIT) based on the notion of a vanishing ideal. PIT captures the above formula equivalence problem and plays a central role in the area of derandomization as known results suggest that derandomizing PIT may enable derandomizing all of BPP. The investigators already characterized the vanishing ideal of a widely used pseudorandom generator for PIT, plan to develop the approach for other generators, and to research the ramifications. In the setting of polynomial-time interactive verification processes known as Arthur-Merlin (AM) protocols, the investigators want to further develop the connections between lower bounds and derandomization, in particular by adapting to the setting of AM the instance-wise connection that was recently established for the setting of BPP.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
做出随机选择的能力似乎简化了一些计算任务。例如,为了确定 x*x-y*y 和 (x+y)*(x-y) 等两个公式是否等效,只需为 x 和 y 插入随机值并验证这两个公式是否产生相同的值。即使对于复杂的公式,这也是一种可靠的策略,比操作抽象公式更容易。随机性的更复杂的使用包括一种抽查计算的方法,这种方法比执行计算本身需要的工作量要少得多——在将计算委托给云的时代,这是一个至关重要的功能。该项目研究了在没有随机性的情况下在决策和验证中实现类似效率的潜力。它结合了研究生和本科生的培训和教育,并包括编写一本教科书,使计算思维和量子算法领域更容易为更广泛的公众所了解。该项目探索了去随机化领域的两个新方向。在具有有界误差的多项式时间决策程序(即有界误差概率多项式时间类,BPP)的设置中,研究人员提出了一种基于理想消失概念的去随机化多项式恒等测试(PIT)的原则方法。 PIT 解决了上述公式等价问题,并在去随机化领域发挥着核心作用,因为已知结果表明,去随机化 PIT 可以使所有 BPP 去随机化。研究人员已经描述了广泛使用的 PIT 伪随机生成器的消失理想,计划开发其他生成器的方法,并研究其后果。在被称为 Arthur-Merlin (AM) 协议的多项式时间交互式验证过程的设置中,研究人员希望进一步开发下限和去随机化之间的联系,特别是通过适应 AM 的设置,即实例级连接最近为 BPP 的设置而设立。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dieter van Melkebeek其他文献

Locality from Circuit Lower Bounds
电路下界的局部性
  • DOI:
    10.1137/110856873
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Anderson;Dieter van Melkebeek;Nicole Schweikardt;Luc Segoufin
  • 通讯作者:
    Luc Segoufin

Dieter van Melkebeek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dieter van Melkebeek', 18)}}的其他基金

AF: EAGER: The Power of Isolation in Computing
AF:EAGER:计算中隔离的力量
  • 批准号:
    1838434
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CCF: AF: Student Travel Support for the IEEE Conference on Computational Complexity 2014
CCF:AF:2014 年 IEEE 计算复杂性会议学生差旅支持
  • 批准号:
    1415168
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AF:Small: Derandomization and Lower Bounds
AF:Small:去随机化和下界
  • 批准号:
    1319822
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AF:Small: Applications of AP-free sets and derandomization
AF:Small:无 AP 集和去随机化的应用
  • 批准号:
    1017597
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Time-Space Lower Bounds for NP-Hard Problems
NP 难问题的时空下界
  • 批准号:
    0728809
  • 财政年份:
    2008
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Techniques for Separations and Inclusions of Complexity Classes
职业:复杂类的分离和包含技术
  • 批准号:
    0133693
  • 财政年份:
    2002
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CSR: Small: Enhancing Timeliness and Power-Efficiency of Real-Time Data Services
CSR:小:提高实时数据服务的及时性和能效
  • 批准号:
    2326796
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RI: Small: The Surprising Power of Sequential Fair Allocation Mechanisms
RI:小:顺序公平分配机制的惊人力量
  • 批准号:
    2327057
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Environmental Cadmium, persistent inflammation and airways disease
环境镉、持续性炎症和气道疾病
  • 批准号:
    10637234
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Otis Brux-Sensor Night Guard - a novel wireless custom night guard system with pressure sensors to quantitatively measure bite compression forces and alleviate sleep bruxism
Otis Brux-Sensor Night Guard - 一种新型无线定制夜间防护系统,带有压力传感器,可定量测量咬合压力并缓解睡眠磨牙症
  • 批准号:
    10684494
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了