Collaborative Research: ABI Innovation: A Scalable Framework for Visual Exploration and Hypotheses Extraction of Phenomics Data using Topological Analytics

合作研究:ABI 创新:使用拓扑分析进行表型组数据的可视化探索和假设提取的可扩展框架

基本信息

  • 批准号:
    1661375
  • 负责人:
  • 金额:
    $ 28.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Understanding how gene by environment interactions result in specific phenotypes is a core goal of modern biology and has real-world impacts on such things as crop management. Developing and managing successful crop practices is a goal that is fundamentally tied to our national food security. By applying novel computational visual analytical methods, this project seeks to identify and unravel the complex web of interactions linking genotypes, environments and phenotypes. These methods will first need to be designed and developed into usable software applications that can handle large volumes of crop phenomics data. High-throughput sensing technologies collect large volumes of field data for many plant traits, such as flowering time, related to crop development and production. The maize cultivars used here come from multiple genotypes that have been grown under a variety of environmental conditions, in order to give the widest range of conditions for understanding the interactions. The resulting data sets are growing quickly, both in size and complexity, but the analytical tools needed to extract knowledge and catalyze scientific discoveries have significantly lagged behind. The methodologies to be developed in this project represent a systematic attempt at bridging this rapidly widening divide. The project is inherently interdisciplinary, involving close research partnerships among computer scientists, plant scientists, and mathematicians. The research outcomes will be tightly integrated with education using a multipronged approach that includes, among others, postdoctoral and student training (graduates and undergraduates), curriculum development for a new campus-wide interdisciplinary undergraduate degree in Data Analytics, conference tutorials for training phenomics data practitioners, and contribution to the recruitment and retention of underrepresented minorities (particularly women) in STEM fields through the Pacific Northwest Louis Stokes Alliance for Minority Participation.This project will lead to the design and development of a new, scalable, visual analytics platform suitable for hypothesis extraction and refinement from complex phenomics data sets. Focus on hypothesis extraction is critical in the context of phenomics data sets because much of the high-throughput sensing data being generated in crop fields are generated in the absence of specifically formulated hypotheses. Extracting plausible hypotheses from the data represents an important but tedious task. To this end, this project will apply and develop new capabilities using emerging advanced algorithmic principles, particularly from the branch of mathematics called algebraic topology that studies shapes and structure of complex data. The research objectives are three-fold. First, the project will employ and extend emerging algorithmic techniques from algebraic topology to decode the structure of large, complex phenomics data. Second, an interactive visual analytic platform will be developed to facilitate knowledge discovery using the extracted topological structures. Lastly, the quality and validity of a new visual analytic platform designed by this team will be tested using real-world maize data sets as well as simulated inputs as testbeds. The developed framework will encode functions for scientists to delineate hypotheses of three kinds: i) genetic characterization of single complex traits; ii) genetic characterization of multiple traits that share potentially pleiotropic effects; and iii) decoding and detailed characterization of genotype-by-environmental interactions, in particular, through a collaborative pilot study of maize flowering and growth traits. The expected significance of the proposed work is that biologists will be able to extract different types of testable hypotheses from plant phenomics data sets by employing a new class of visual analytic tools, and thus obtain a deeper understanding of the interactions among genotypes, environments and phenotypes. The project is potentially transformative in two ways: i) it will introduce advanced mathematical and computational principles into mainstream phenomic data analysis; and ii) it will usher in a new era where biologists spearhead data-driven hypothesis extraction and discovery with the aid of interactive, informative, and intuitive tools. The project will have a direct impact on the state of software in phenomics for fundamental data-driven discovery. To facilitate broader community adoption, the project will integrate the tools into the CyVerse Institute, and to a community phenomics software outlet. It will also lead to the development of automated scientific workflows. Project website: http://tdaphenomics.eecs.wsu.edu/
了解基因与环境的相互作用如何导致特定的表型是现代生物学的核心目标,并且对作物管理等具有现实世界的影响。开发和管理成功的作物实践是一个与我们国家粮食安全根本相关的目标。通过应用新颖的计算视觉分析方法,该项目试图识别和揭示连接基因型、环境和表型的复杂相互作用网络。首先需要将这些方法设计并开发成可用的软件应用程序,以处理大量作物表型组数据。高通量传感技术收集大量与作物发育和生产相关的许多植物性状的田间数据,例如开花时间。这里使用的玉米品种来自在各种环境条件下生长的多种基因型,以便为理解相互作用提供最广泛的条件。由此产生的数据集在规模和复杂性方面都在快速增长,但提取知识和催化科学发现所需的分析工具却明显落后。该项目将开发的方法代表了弥合这一迅速扩大的鸿沟的系统性尝试。该项目本质上是跨学科的,涉及计算机科学家、植物科学家和数学家之间的密切研究伙伴关系。研究成果将采用多管齐下的方法与教育紧密结合,其中包括博士后和学生培训(研究生和本科生)、新校园数据分析跨学科本科学位的课程开发、用于培训表型组数据的会议教程的实践者,并通过太平洋西北路易斯斯托克斯少数民族参与联盟为 STEM 领域招募和保留代表性不足的少数民族(特别是女性)做出贡献。该项目将设计和开发一个新的、可扩展的可视化分析平台,适用于从复杂的表型组数据集中提取和完善假设。在表型组学数据集的背景下,关注假设提取至关重要,因为作物田中生成的许多高通量传感数据都是在没有专门制定的假设的情况下生成的。从数据中提取合理的假设是一项重要但乏味的任务。为此,该项目将利用新兴的先进算法原理来应用和开发新功能,特别是来自研究复杂数据的形状和结构的代数拓扑数学分支的新功能。研究目标有三个。首先,该项目将采用并扩展代数拓扑中的新兴算法技术来解码大型、复杂的表型组数据的结构。其次,将开发一个交互式视觉分析平台,以促进使用提取的拓扑结构进行知识发现。最后,该团队设计的新视觉分析平台的质量和有效性将使用真实世界的玉米数据集以及模拟输入作为测试平台进行测试。开发的框架将为科学家编码功能,以描述三种假设:i)单一复杂性状的遗传表征; ii) 具有潜在多效性的多个性状的遗传特征; iii) 基因型与环境相互作用的解码和详细表征,特别是通过玉米开花和生长性状的合作试点研究。这项工作的预期意义在于,生物学家将能够通过采用一类新型的视觉分析工具,从植物表型组数据集中提取不同类型的可检验假设,从而更深入地了解基因型、环境和表型之间的相互作用。该项目在两个方面具有潜在的变革性:i)它将先进的数学和计算原理引入主流表组数据分析中; ii) 它将开创一个新时代,生物学家借助交互式、信息丰富和直观的工具,率先进行数据驱动的假设提取和发现。该项目将对基本数据驱动发现的表型组学软件的状态产生直接影响。为了促进更广泛的社区采用,该项目将把这些工具集成到 CyVerse 研究所和社区表型组学软件商店中。它还将导致自动化科学工作流程的发展。项目网站:http://tdaphenomics.eecs.wsu.edu/

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrete Stratified Morse Theory: A User's Guide
离散分层莫尔斯电码理论:用户指南
On homotopy types of Vietoris–Rips complexes of metric gluings
关于公制胶合的 VietorisâRip 配合物的同伦类型
  • DOI:
    10.1007/s41468-020-00054-y
  • 发表时间:
    2017-12-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michal Adamaszek;Henry Adams;Ellen Gasparovic;Maria Gommel;Emilie Purvine;R. Sazdanovic;Bei Wang;Y
  • 通讯作者:
    Y
Mapper Interactive: A Scalable, Extendable, and Interactive Toolbox for the Visual Exploration of High-Dimensional Data
Mapper Interactive:用于高维数据可视化探索的可扩展、可扩展的交互式工具箱
VERB: Visualizing and Interpreting Bias Mitigation Techniques Geometrically for Word Representations
VERB:以几何方式可视化和解释单词表示的偏差缓解技术
Adaptive Covers for Mapper Graphs Using Information Criteria
使用信息标准的映射器图的自适应覆盖
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bei Phillips其他文献

Bei Phillips的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bei Phillips', 18)}}的其他基金

Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
  • 批准号:
    2313124
  • 财政年份:
    2023
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiparameter Topological Data Analysis
合作研究:多参数拓扑数据分析
  • 批准号:
    2301361
  • 财政年份:
    2023
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCH: Geometry and Topology for Interpretable and Reliable Deep Learning in Medical Imaging
合作研究:SCH:医学成像中可解释且可靠的深度学习的几何和拓扑
  • 批准号:
    2205418
  • 财政年份:
    2022
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
CAREER: A Measure Theoretic Framework for Topology-Based Visualization
职业生涯:基于拓扑的可视化的测量理论框架
  • 批准号:
    2145499
  • 财政年份:
    2022
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Geometry and Topology for Interpretable and Reliable Deep Learning in Medical Imaging
合作研究:SCH:医学成像中可解释且可靠的深度学习的几何和拓扑
  • 批准号:
    2205418
  • 财政年份:
    2022
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
NSF Student Travel Support for the Doctoral Colloquium at 2020 IEEE Visualization Conference (IEEE VIS)
NSF 学生为 2020 年 IEEE 可视化会议 (IEEE VIS) 博士座谈会提供旅行支持
  • 批准号:
    2024149
  • 财政年份:
    2020
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
III: Small: Visualizing Robust Features in Vector and Tensor Fields
III:小:可视化矢量和张量场中的鲁棒特征
  • 批准号:
    1910733
  • 财政年份:
    2019
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Topological Data Analysis for Large Network Visualization
III:媒介:协作研究:大型网络可视化的拓扑数据分析
  • 批准号:
    1513616
  • 财政年份:
    2015
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant

相似国自然基金

蛋白磷酸酶PP2C34和PP2C75去磷酸化ABI1激活ABA信号途径的作用机理研究
  • 批准号:
    32370331
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
耐干苔藓脱落酸信号关键因子ABI3调控机理研究
  • 批准号:
    31900270
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
ABI3对阿尔茨海默病小胶质细胞吞噬功能调控及机制研究
  • 批准号:
    81801266
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
SRRM4介导Abi1可变剪接调控平滑肌细胞表型转化在动脉粥样硬化中的关键作用和机制研究
  • 批准号:
    81800415
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
拟南芥转录因子ABI5和MYB30共调控ABA受体PYL12参与种子萌发的机制研究
  • 批准号:
    31872656
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了